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PREFACE

System identification is a diverse field that can be presented in many different ways.
The subtitle, Theory for the User, reflects the attitude of the present treatment. Yes,
the book is about theory, but the focus is on theory that has direct consequences for
the understanding and practical use of available techniques. My goal has been to
give the reader a firm grip on basic principles so that he or she can confidently
approach a practical problem, as well as the rich and sometimes confusing literature
on the subject.

Stressing the utilitarian aspect of theory should not, I believe, be taken as an
excuse for sloppy mathematics. Therefore, I have tried to develop the theory
without cheating. The more technical parts have, however, been placed in appen-
dixes or in asterisk-marked sections, so that the reluctant reader does not have to
stumble through them. In fact, it is a redeeming feature of life that we are able to
use many things without understanding every detail of them. This is true also of the
theory of system identification. The practitioner who is looking for some quick
advice should thus be able to proceed rapidly to Part III (User’s Choices) by
hopping through the summary sections of the earlier chapters.

The core material of the book should be suitable for a graduate-level course in
system identification. As a prerequisite for such a course, it is natural, although not
absolutely necessary, to require that the student should be somewhat familiar with
dynamical systems and stochastic signals. The manuscript has been used as a text for
system identification courses at Stanford University, the Massachusetts Institute of
Technology, Yale University, the Australian National University and the Univer-

xiii



sities of Lund and Linképing. Course outlines, as well as a solutions manual for the
problems, are available from the publisher.

For a course on system identification, the role of computer-based exercises
should be stressed. Simulation sessions demonstrating how hidden properties of
data are readily recovered by the techniques discussed in the book enhance the
understanding and motivation of the material. In the problems labeled S, in
Chapters 2 through 16, a basic interactive software package is outlined that
should be possible to implement rather painlessly in a high-level environment. A
PC-MATLAB version of this package is commercially available (see Ljung, 1986b).
With such a package all basic techniques of this book can be illustrated and tested
on real and simulated data.

The existing literature on system identification is indeed extensive and virtu-
ally impossible to cover in a bibliography. In this book I have tried to concentrate on
recent and easily available references that I think are suitable for further study, as
well as on some earlier works that reflect the roots of various techniques and results.
Clearly, many other relevant references have been omitted.

Finally, some words about the structure of this book: The dependence among
the different chapters is illustrated in Figure 1.13, which shows that some chapters
are not necessary prerequisites for the following ones. Also, some portions contain
material that is directed more toward the serious student of identification theory
than to the user. These portions are put either in appendixes or in sections and
subsections marked with an asterisk (*). While occasional references to this material
may be encountered, it is safe to regard it as optional reading; the continuity will not
be impaired if it is skipped.

The problem sections for each chapter have been organized into six groups of
different problem types:

O G problems: These could be of General interest and it may be worthwhile to
browse through them, even without intending to solve them.

O E problems: These are regular pencil-and-paper Exercises to check the basic
techniques of the chapter.

O T problems: These are Theoretically oriented problems and typically more
difficult than the E problems.

O D problems: In these problems the reader is asked to fill in technical Details
that were glossed over in the text (a way to dump straightforward technicalities
from the book into the solutions manual!).

O § problems: These develop the basic identification Software package men-
tioned earlier.

O C problems: These require a Computer. Clearly, with the software package at
hand, the C problems can be complemented with a myriad of problems experi-
menting with identification methods and data. Such problems are not specifi-
cally listed, but the reader is encouraged to apply those techniques in an
exploratory fashion.
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OPERATORS AND NOTATIONAL
CONVENTIONS

arg(z) = argument of the complex number z
arg min f(x) = value of x that minimizes f(x)

xy € AsF(n, m): sequence of random variables xy converges in distribution
to the F-distribution with n and m degrees of freedom

xy € AsN(m, P): sequence of random variables xy converges in distribution
to the normal distribution with mean m and covariance matrix P; see (1.17)

xn € Asx*(n): sequence of random variables xy converges in distribution to
the x? distribution with n degrees of freedom

Cov(x) = covariance matrix of the random vector x; see (I.4)

det A = determinant of the matrix A

dim @ = dimension (number of rows) of the column vector 8

E x = mathematical expectation of the random vector x; see (I1.3)

Ex(f) = limN_,w—It—IEf‘L 1 E x(); see (2.60)

O(x) = ordo x: function tending to zero at the same rate as x
o(x) = small ordo x: function tending to zero faster than x

x € N(m, P): random variable x is normally distributed with mean m and
covariance matrix P; see (1.6)
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Re z = real part of the complex number 2z

R(f) = range of the function f = the set of values that f(x) may assume
R¢ = Euclidian d-dimensional space

x = sol{f (x) = 0}: x is the solution (or set of solutions) to the equation
fx)=0

tr(A) = trace (the sum of the diagonal elements) of the matrix A

Var (x) = variance of the random variable x

A™! = inverse of the matrix A

AT = transpose of the matrix A

AT = transpose of the inverse of the matrix A

z = complex conjugate of the complex number z

(superscript * is not used to denote transpose and complex conjugate: it is
used only as a distinguishing superscript)

yo ={y@),y(s +1),...,y(®}

y={y),y@),...,y®}

Un(w) = Fourier transform of u"; see (2.37)

R,(7) = Ev())vT(t — 7); see (2.61)

Ry.(t) = Es(®wT(t — 7); see (2.62)

®,(w) = spectrum of v = Fourier transform of R,(7); see (2.63)

®,,(w) = cross spectrum between s and w = Fourier transform of R;, (1); see
(2.64)

RY(@) = & S s (@057 = 7); 502 (6.10)

&? (@) = estimate of the spectrum of u based on u; see (6.48)
P(¢|t — 1) = prediction of v(f) based on v' ™"

4 V(6) = gradient of V(6) with respect to ¢: a column vector of dimension

dé dim @if V is scalar valued
V'(6) = gradient of V with respect to its argument
¢!(e,0) = partial derivative of ¢ with respect to &
d; = Kronecker’s delta: zero unless i = j
(k) = dwo
%R(6,e) = & neighborhood of 6y: {6]|6 — 6| < €}
= = the left side is defined by the right side
|-| = (Euclidian) norm of a vector
|-l = (Frobenius) norm of a matrix (see 2.89)

Operators and Notational Conventions



SYMBOLS USED IN TEXT

This list contains symbols that have some global use. Some of the symbols may have
another local meaning.

Dy, = set of values over which 6 ranges in a model structure. See (4.119)
D, = set into which the 6-estimate converges. See (8.23)

e(t) = disturbance at time #; usually {e(#), t = 1,2, ...} is white noise (a
sequence of independent random variables with zero mean values and
variance \)

¢ () = “true” driving disturbance acting on a given system ¥; see (8.2)
f.(x), f.(x,68) = probability density function of the random variable e; see
(1.2) and (4.4)

G (g) = transfer function from u to y; see (2.20)

G (g,6) = transfer function in a model structure, corresponding to the
parameter value 6; see (4.4)

Gy (q) = “true” transfer function from « to y for a given system; see (8.7)
GN(q) = estimate of G (q) based on ZV

G *(q) = limiting estimate of G (g); see (8.68)

GN(q) = difference GN(q) — Gy (q); see (8.15)

% = set of transfer functions obtained in a given structure; see (8.44)

H(q), H(q,9), Ho(q), Ax(q), H*(q), Ax(q),%: analogous to G but for the
transfer function from e to y

L (q) = prefilter for the prediction errors; see (7.10)

£(¢), £(&,0), €(=,t,0) = norm for the prediction errors used in the criterion;
see (7.11), (7.16), (7.18)

M = model structure (a mapping from a parameter space to a set of models);
see (4.119)

M(6) = particular model corresponding to the parameter value 6; see (4.119)

M* = set of models (usually generated as the range of a model structure);
see (4.115) and page 93

P, = asymptotic covariance matrix of 6; see (9.11)

g, q ! = forward and backward shift operators; see (2.15)
¥ = “the true system”; see (8.7)

T(q) = [G(q) H(q)]; see (4.106)

T(q,9), To(q), Tn(q), Tv(g) = analogous to G and H

u () = input variable at time ¢

Operators and Notational Conventions Xix



Vi (8, Z%) = criterion function to be minimized; see (7.11)
V(6) = limit of criterion function; see (8.28)
v(#) = disturbance variable at time ¢

w(?) = usually a disturbance variable at time ¢; the precise meaning varies
with the local context

x(f) = state vector at time ¢; dimension = n
y{(t) = output variable at time ¢

$(t|6) = predicted output at time ¢ using a model M(6) and based on Z*~;
see (4.6)

z()) = [y (® u()]%; see (4.110)

zZN= {u(0), y(0),..., u(N), y(N}

e(t,0) = prediction error y (f) — y(¢6)

A = used to denote variance; also, in Chapter 11, the forgetting factor; see
(11.6), (11.63)

6 = vector used to parametrize models; dimension = d; see (4.4), (4.5),
(5.33)

by, 0o, 6%, Oy = analogous to G

¢(f) = regression vector at time ¢; see (4.11) and (5.34)

Xo () = [u(?) e (9)]7; see (8.14)

U(t,0) = gradient of § (¢|6) with respect to 6; a d-dimensional column vector;
see (4.118¢c)

(9, {(t,0) = “the correlation vector” (instruments); see (7.96)
T’'(q,0) = gradient of T(g,6) with respect to 6 (a d X 2 matrix); see (4.122)

ABBREVIATIONS AND ACRONYMS

ARARX: See Table 4.1
ARMA: AutoRegressive Moving Average (see Table 4.1)

ARMAX: AutoRegressive Moving Average with eXternal input (see Table
4.1)

ARX: AutoRegressive with eXternal input (see Table 4.1)
BJ: Box-Jenkins model structure (see Table 4.1)

ETFE: Empirical Transfer Function Estimate; see (6.24)
FIR: Finite Impulse Response model (see Table 4.1)

IV: Instrumental variables (see Section 7.6)

LS: Least Squares (see Section 7.3)

ML: Maximum Likelihood (see Section 7.4)

MSE: Mean Square Error

XX Operators and Notational Conventions



OE: Output error model structure (see Table 4.1)
PDF: Probability Density Function

PEM: Prediction-Error Method (see Section 7.2)
PLR: PseudoLinear Regression (see Section 7.5)
RIV: Recursive IV (see Section 11.3)

RLS: Recursive LS (see Section 11.2)

RPEM: Recursive PEM (see Section 11.4)
RPLR: Recursive PLR (see Section 11.5)

SISO: Single Input Single Output

w.p.: with probability

w.p. 1: with probability one; see (I1.15)

w.r.t.: with respect to

Operators and Notational Conventions xxi



INTRODUCTION

Inferring models from observations and studying their properties is really what
science is about. The models (“hypotheses,” “laws of nature,” “paradigms,” etc.)
may be of more or less formal character, but they have the basic feature that they
attempt to link observations together into some pattern. System identification deals
with the problem of building mathematical models of dynamical systems based on
observed data from the systems. The subject is thus part of basic scientific meth-
odology, and since dynamical systems are abundant in our environment, the tech-
niques of system identification have a wide application area. This book aims at
giving an understanding of available system identification methods, their rationale,
properties, and use.

1.1 DYNAMICAL SYSTEMS

In loose terms a system is an object in which variables of different kinds interact and
produce observable signals. The observable signals that are of interest to us are
usually called outputs. The system is also affected by external stimuli. External
signals that can be manipulated by the observer are called inputs. Others are called
disturbances and can be divided into those that are directly measured and those that
are only observed through their influence on the output. The distinction between
inputs and measured disturbances is often less important for the modeling process.
See Figure 1.1.

Clearly the notion of a system is a broad concept, and it is not surprising that it



w
_y__. Heat storage
u
—

Figure 1.1 A system with output Figure 1.2 A solar-heated house.
y, input ¥, measured disturbance
w, and unmeasured disturbance v.

plays an important role in modern science. Many problems in various fields are
solved in a systems-oriented framework. Instead of attempting a formal definition
of the system concept, we shall illustrate it by a few examples.

Example 1.1 A Solar-heated House

Consider the solar-heated house depicted in Figure 1.2. The system operates in such a way
that the sun heats the air in the solar panel, which consists of transparent hoses. This air is
fanned into the heat storage, which is a box filled with pebbles. The stored energy can later
be transferred to the house. We are interested in how solar radiation and fan velocity affect
the temperature of the heat storage. This system is symbolically depicted in Figure 1.3.
Figure 1.4 shows a record of observed data over a 16-hour period. The variables were
sampled every 10 minutes.

Example 1.2 Ship-steering Dynamics

The motion of a ship on the ocean is governed by the propeller forces, the rudder angle, and
forces from wind and waves. See Figure 1.5. As a subproblem, we may consider how the
ship’s heading angle is affected by the rudder angle at constant propeller forces. This system
is depicted in Figure 1.6. A record of data for this system is shown in Figure 1.7. It stretches
over 25 minutes, and the variables were sampled every 10 seconds. Wl

Example 1.3 Speech

The sound of the human voice is generated by the vibration of the vocal chords or, in the case
of unvoiced sounds, the air stream from the throat, and formed by the shape of the vocal
tract. See Figure 1.8. The output of this system is sound vibration (i.e., the air pressure), but

temperature, etc.

v: wind, outdoor
|: solar

radiation
) stora’e Figure 1.3 The solar-heated house sys-
— y: g : .
u: fan temperature  tem: u: input; I': measured disturbance;
velocity y:output; v: unmeasured disturbances.

2 Introduction
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Figure 1.4 Storage temperature y, fan velocity u, and solar intensity I over a
16-hour period. Sampling interval: 10 minutes.

the external stimuli are not measurable. See Figure 1.9. Data from this system are shown in
Figure 1.10. W

The systems in these examples are all dynamic, which means that the current
output value depends not only on the current external stimuli but also on their
earlier values. Outputs of dynamical systems whose external stimuli are not ob-
served (such as in Example 1.3) are often called fime series. This term is especially
common in economic applications. Clearly, the list of examples of dynamical
systems can be very long and it stretches over many fields of science.

1.2 MODELS
Model Types and Their Use

When we interact with a system, we need some concept of how its variables
relate to each other. With a broad definition, we shall call such an assumed relation-

1.2 Models 3



v: wind and
wave forces

—
¥ §: rudder y: heading
— angle angle
Figure 1.5 A ship’s motion in the hori- Figure 1.6 The steering dynam-
zontal plane. 8: rudder command; : ics system. &: input. {§: output. v:
heading angle. unmeasured disturbances.

ship among observed signals a model of the system. Clearly, models may come in
various shapes and be phrased with varying degrees of mathematical formalism.
The intended use will determine the degree of sophistication that is required to
make the mode! purposeful.

No doubt, in daily life many systems are dealt with using mental models, which
do not involve any mathematical formalization at all. To drive a car, for example,
requires the knowledge that turning the steering wheel to the left induces a left turn,
together with subtle information built up in the muscle memory. The importance
and degree of sophistication of the latter should of course not be underestimated.

For certain systems it is appropriate to describe its properties using numerical
tables and/or plots. We shall call such descriptions graphical models. Linear sys-

8
10°
0 —
—10° 4
w I T T
150°
1400 Figure 1.7 Input-output data for the
T T T ship-steering dynamics system. Sampli
0 500 1000 t P A y ping

(sec) interval: 10 seconds.
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airflow
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y: sound

Figure 1.8 Speech generation. Figure 1.9 The speech
system: y: output. v: un-
measured disturbance.

tems, for example, can be uniquely described by their impulse or step responses or
by their frequency functions. Graphical representations of these are widely used for
various design purposes. The nonlinear characteristics of, say, a valve are also well
suited to be described by a graphical model.

For more advanced applications, it may be necessary to use models that
describe the relationships among the system variables in terms of mathematical
expressions like difference or differential equations. We shall call such models
mathematical (or analytical) models. Mathematical models may be further charac-
terized by a number of adjectives (time continuous or time discrete, lumped or
distributed, deterministic or stochastic, linear or nonlinear, etc.) signifying the type
of difference or differential equation used. The use of mathematical models is
inherent in all fields of engineering and physics. In fact, a major part of the
engineering field deals with how to make good designs based on mathematical
models. They are also instrumental for simulation and forecasting (prediction),
which is extensively used in all fields, including nontechnical areas like economy,
ecology, and biology.

The model used in a computer simulation of a system is a program. For

Figure 1.10 The speech signal (air pres- 0 1'0 2
sure). Data sampled every 0.125 ms. 0
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complex systems, this program may be built up by many interconnected subroutines
and lookup tables, and it may not be feasible to summarize it analytically as a
mathematical model. We use the term software model for such computerized de-
scriptions. They have come to play an increasingly important role in decision mak-
ing for complicated systems.

Building Models

Basically, a model has to be constructed from observed data. The mental
model of car-steering dynamics, for example, is developed through driving experi-
ence. Graphical models are made up from certain measurements. Mathematical
models may be developed along two routes (or a combination of them). One route is
to split up the system, figuratively speaking, into subsystems, whose properties are
well understood from previous experience. This basically means that we rely on
“laws of nature” and other well-established relationships that have their roots in
earlier empirical work. These subsystems are then joined mathematically and a
model of the whole system is obtained. This route is known as modeling and does
not necessarily involve any experimentation on the actual systems. The procedure
of modeling is quite application dependent and often has its roots in tradition and
specific techniques in the application area in question. Basic techniques typically
involve structuring of the process into block diagrams with blocks consisting of
simple elements. The reconstruction of the system from these simple blocks is now
increasingly being done by computer, resulting in a software model rather than a
mathematical model.

The other route to mathematical as well as graphical models is directly based
on experimentation. Input and output signals from the system, such as those in
Figures 1.4, 1.7, and 1.10, are recorded and subjected to data analysis in order to
infer a model. This route is system identification.

The Fiction of a True System

The real-life actual system is an object of a different kind than our mathe-
matical models. In a sense, there is an impenetrable but transparent screen between
our world of mathematical descriptions and the real world. We can look through
this window and compare certain aspects of the physical system with its mathema-
tical description, but we can never establish any exact connection between them.
The question of nature’s susceptibility to mathematical description has some deep
philosophical aspects, and in practical terms we have to take a more pragmatic view
of models. Our acceptance of models should thus be guided by ““usefulness” rather
than “truth.”” Nevertheless, we shall occasionally use a concept of “the true system,”
defined in terms of a mathematical description. Such a fiction is helpful for devising
identification methods and understanding their properties. In such contexts we
assume that the observed data have been generated according to some well-defined
mathematical rules, which of course is an idealization.

6 Introduction



1.3 THE SYSTEM IDENTIFICATION PROCEDURE

Three Basic Entities
The construction of a model from data involves three basic entities:

1. The data
2. A set of candidate models
3. A rule by which candidate models can be assessed using the data

Let us comment on each of these:

1. The data record. The input—-output data are sometimes recorded during a
specifically designed identification experiment, where the user may determine
which signals to measure and when to measure them and may also choose the
input signals. The object with experiment design is thus to make these choices
so that the data become maximally informative, subject to constraints that
may be at hand. In other cases the user may not have the possibility to affect
the experiment, but must use data from the normal operation of the system.

2. The set of models. A set of candidate models is obtained by specifying within
which collection of models we are going to look for a suitable one. This is no
doubt the most important and, at the same time, the most difficult choice of
the system identification procedure. It is here that a priori knowledge and
engineering intuition and insight have to be combined with formal properties
of models. Sometimes the model set is obtained after careful modeling. Then a
model with some unknown physical parameters is constructed from basic
physical laws and other well-established relationships. In other cases standard
linear models may be employed, without reference to the physical back-
ground. Such a model set, whose parameters are basically viewed as vehicles
for adjusting the fit to the data and do not reflect physical considerations in the
system, is called a black box. Model sets with adjustable parameters with
physical interpretation may, accordingly, be called gray boxes.

3. Determining the ‘“‘best” model in the set, guided by the data. This is the
identification method. The assessment of model quality is typically based on
how the models perform when they attempt to reproduce the measured data.

Model Validation

After having settled on the preceding three choices, we have, at least implic-
itly, arrived at a particular model: the one in the set that best describes the data
according to the chosen criterion. It then remains to test whether this model is
“good enough,” that is, whether it is valid for its purpose. Such tests are known as
model validation. They involve various procedures to assess how the model relates
to observed data, to prior knowledge, and to its intended use. Deficient model

1.3 The System Identification Procedure 7



behavior in these respects make us reject the model, while good performance will
develop a certain confidence in the model. A model can never be accepted as a final
and true description of the system. Rather, it can at best be regarded as a good
enough description of certain aspects that are of particular interest to us.

The System Identification Loop

The system identification procedure has a natural logical flow: first collect
data, then choose a model set, then pick the “best” model in this set. It is quite
likely, though, that the model first obtained will not pass the model validation tests.
We must then go back and revise the various steps of the procedure.

The model may be deficient for a variety of reasons:

O The numerical procedure failed to find the best model according to our
criterion.
O The criterion was not well chosen.
0 The model set was not appropriate, in that it did not contain any “good
enough” description of the system.
O The data set was not informative enough to provide guidance in selecting good
models.
The major part of an identification application in fact consists of addressing these
problems, in particular the third one, in an iterative manner, guided by prior
information and the outcomes of previous attempts. See Figure 1.11. Interactive
software obviously is an important tool for handling the iterative character of this
problem.

1.4 ORGANIZATION OF THE BOOK

To master the loop of Figure 1.11, the user has to be familiar with a number of
things:

1. Available techniques of identification and their rationale, as well as typical
choices of model sets

2. The properties of the identified model and their dependence on the basic
items: data, model set, and identification criterion

3. Numerical schemes for computing the estimate

4. How to make intelligent choices of experiment design, model set, and
identification criterion, guided by prior information as well as by observed
data

In fact, a user of system identification may find that he or she is primarily a
user of an interactive identification software package. Items 1 and 3 are then part of

8 Introduction
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Figure 1.11 The system identification loop.

the package and the important thing is to have a good understanding of item 2 so
that task 4 can be successfully completed. This is what we mean by “Theory for the
User,” and this is where the present book has its focus.

The idea behind the book’s organization is to present the list of common and
useful model sets in Chapters 4 and 5. Available techniques are presented in Chap-
ters 6 and 7, and the analysis follows in Chapters 8 and 9. Numerical techniques for
off-line and on-line applications are described in Chapters 10 and 11. Task 4, the
user’s choices, is discussed primarily in Chapters 14 through 16, after some pre-
liminaries in Chapter 12 and 13. In addition, Chapters 2 and 3 give the formal setup
of the book, and Chapter 17 describes and assesses system identification as a tool
for practical problems.

Figure 1.12 illustrates the book’s structure in relation to the loop of system
identification. A flow chart of the chapters of the book is given in Figure 1.13. It
shows, among other things, which chapters can be skipped without serious loss of
continuity.

1.4 Organization of the Book 9
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Chapter 14 Experiment design J
Data
Chapters 4 and 5 Chapter 16 Choose model set Chapters 8 and 9
Chapters 6 and 7 Chapter 15 Choose criterion of fit
Chapters 10 and 11 Calculate model
Chapter 16 Validate model

Figure 1.12 Organization of the book.
About the Framework

The system identification framework we set up here is fairly general. It does
not confine us to linear models or quadratic criteria or to assuming that the system
itself can be described within the model set. Indeed, this is one of the points that
should be stressed about our framework. Nevertheless, we often give proofs and
explicit expressions only for certain special cases, like single-input, single-output
systems and quadratic criteria. The purpose is of course to enhance the underlying
basic ideas and not conceal them behind technical details. References are usually
provided for more general treatments.

Parameter estimation and identification are usually described within a proba-
bilistic framework. Here we basically employ such a framework. However, we also
try to retain a pragmatic viewpoint that is independent of probabilistic interpreta-
tions. That is, the methods we describe and the recommendations we put forward
should make sense even without the probabilistic framework that may motivate
them as “optimal solutions.” The probabilistic and statistical environments of the
book are described in Appendixes I and II, respectively. These appendixes may be
read prior to the other chapters or consulted occasionally when required. In any
case, the book does not lean heavily on the background provided there.

1.5 BIBLIOGRAPHY

The literature on the system identification problem and its ramifications is exten-
sive. Among general textbooks on the subject we may mention Box and Jenkins
(1970), Eykhoff (1974), and Spriet and Vansteenkiste (1982) for thorough treat-
ments covering several practical issues, while Goodwin and Payne (1977), Davis and
Vinter (1985), and Soderstrém and Stoica (1987) give more theoretically oriented
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Figure 1.13 Flowchart of the book’s chapters.

presentations. Kashyap and Rao (1976) emphasize the role of model validation and
model selection in their treatment of system identification, while Séderstréom and
Stoica (1983) focus on instrumental-variable methods. Texts that concentrate on
recursive identification techniques include Ljung and Séderstrom (1983) and Young
(1984). Statistical treatments of time-series modeling, such as T. Anderson (1971),
Hannan (1970), and Brillinger (1981), are most relevant also for the system identifi-
cation problem.

Among edited collections of articles, we may refer to Mehra and Lainiotis
(1976), Eykhoff (1981), Hannan, Krishnaiah, and Rao (1985), and Leondes (1987),
as well as to the special journal issues Kailath, Mehra, and Mayne (1974) and
Isermann (1981). The proceedings from the International Federation of Automatic
Control (IFAC) series, Symposium on Identification and System Parameter
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Estimation (Prague, 1967, 1970; the Hague, 1973; Tbilisi, 1976; Darmstadt, 1979;
Washington, D.C., 1982; York, 1985; Beijing, 1988), contain many articles on all
aspects of the system identification problem.

Philosophical aspects on mathematical models of real-life objects are dis-
cussed, for example, in Popper (1934). Modeling from basic physical laws, rather
than from data, is discussed in many books; see, for exampie, Wellstead (1979),
Nicholson (1981), and Frederick and Close (1978) for engineering applications.
Such treatments are important complements to the model set selection (see Section
1.3 and Chapter 16).

Many books discuss modeling and identification in various application areas.
See for example, Granger and Newbold (1977) or Malinvaud (1980) (econometrics),
Godfrey (1983) (biology), Robinson and Treitel (1980) or Mendel (1983) (geosci-
ence), Dudley (1983) (electromagnetic wave theory), Markel and Gray (1976)
(speech signals), and Beck and van Straten (1983) (environmental systems).
Rajbman (1975) has surveyed the Soviet literature.

+The proceedings of the Hague and Tbilisi Symposia have been published by North-Holland,
Amsterdam, while the proceedings of the subsequent symposia have been published by Pergamon Press,
New York.
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I systems and models

TIME-INVARIANT LINEAR SYSTEMS

Time-invariant linear systems no doubt form the most important class of dynamical
systems considered in practice and in the literature. It is true that they represent
idealizations of the processes encountered in real life. But, even so, the approxima-
tions involved are often justified, and design considerations based on linear theory
lead to good results in many cases.

A treatise of linear systems theory is a standard ingredient in basic engineering
education, and the reader has no doubt some knowledge of this topic. Anyway, in
this chapter we shall provide a refresher on some basic concepts that will be instru-
mental for the further development in this book. In Section 2.1 we shall discuss the
impulse response and various ways of describing and understanding disturbances, as
well as introduce the transfer-function concept. In Section 2.2 we study frequency-
domain interpretations and also introduce the periodogram. Section 2.3 gives a
unified setup of spectra of deterministic and stochastic signals that will be used in
the remainder of this book. In Section 2.4 a basic ergodicity result is proved. The
development in these sections is for systems with a scalar input and a scalar output.
Section 2.5 contains the corresponding expressions for multivariable systems.

2.1 IMPULSE RESPONSES, DISTURBANCES,
AND TRANSFER FUNCTIONS
Impulse Response

Consider a system with a scalar input signal «(f) and a scalar output signal y ®
(Figure 2.1). The system is said to be time invariant if its response to a certain input
signal does not depend on absolute time. It is said to be linear if its output response

13
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Figure 2.1 The system

to a linear combination of inputs is the same linear combination of the output
responses of the individual inputs. Furthermore, it is said to be causal if the output
at a certain time depends on the input up to that time only.

It is well known that a linear, time-invariant, causal system can be described
by its impulse response (or weighting function) g (t) as follows:

=

T

)

=0g(‘r)u(t —7)d~ 2.1)

Knowing {g(1)};- o and knowing u(s) for s < ¢, we can consequently compute the
corresponding output y(s), s =t for any input. The impulse response is thus a
complete characterization of the system.

Sampling

In this book we shall almost exclusively deal with observations of inputs and
outputs in discrete time, since this is the typical data-acquisition mode. We thus
assume y (?) to be observed at the sampling instants t, = kT, k =1,2,...:

y () = |

T

0

_ B@ukT ~ %) ds 2.2)

The interval T will be called the sampling interval. 1t is, of course, also possible to
consider the situation where the sampling instants are not equally spread.

Most often, in computer control applications, the input signal u(f) is kept
constant between the sampling instants:

u(t) = u, kT =t<(k+ 1T 2.3)

This is mostly done for practical implementation reasons, but it will also greatly
simplify the analysis of the system. Inserting (2.3) into (2.2) gives

0

y(kT)=f;0g('r)u(kT—'r)dT=£z T e@ukT 1) dr

=171=(¢-)T

(2.9
had T )
=2 U g(T)dT]uk—€= Egr(lf)uk_e
¢=1|J7=0¢-1T -1
where we defined
€T
gf) = f g(r)ds 2.5)
T=(-1)T

The expression (2.4) tells us what the output will be at the sampling instants. Note
that no approximation is involved if the input is subject to (2.3) and that it is
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sufficient to know the sequence {g(€)}; - in order to compute the response to the
input. The relationship (2.4) describes a sampled-data system, and we shall call the
sequence {gr{€)}? - ; the impulse response of that system.

Even if the input is not piecewise constant and subject to (2.3), the representa-
tion (2.4) might still be a reasonable approximation, provided u (f) does not change
too much during a sampling interval. See also the following expressions (2.21) to
(2.26).

We shall stick to the notation (2.3) to (2.5) when the choice and size of T are
essential to the discussion. For most of the time, however, we shall for ease of
notation assume that T is one time unit and use ¢ to enumerate the sampling
instants. We thus write for (2.4).

y(@) = > gku(@t —k), ¢=012,... (2.6)
k=1
For sequences, we shall also use the notation
y: = 0EyG6 +1),...,y00) @7
and for simplicity
yi=y'

Disturbances

According to the relationship (2.6), the output can be exactly calculated once
the input is known. In most cases this is unrealistic. There are always signals beyond
our control that also affect the system. Within our linear framework we assume that
such effects can be lumped into an additive term v () at the output (see Figure 2.2):

y(@ = Elg(k)u(t —k+v( (2.8)

There are many sources and causes for such a disturbance term. We could list

O Measurement noise: The sensors that measure the signals are subject to noise
and drift.

O Uncontrollable inputs: The system is subject to signals that have the character
of inputs, but are not controllable by the user. Think of an airplane, whose
movements are affected by the inputs of rudder and aileron deflections, but
also by wind gusts and turbulence. Another example could be a room, where
the temperature is determined by radiators, whose effect we control, but also
by people (=100 W per person) who may move in and out in an unpredictable

manner.
v(t)
u(t) y(t)
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Figure 2.3 Frequency of generated ac
voltage, subject to a load change between
times ¢; and #,.

The character of the disturbances could also vary within wide ranges. Classical
ways of describing disturbances in control have been to study steps and pulses, while
in stochastic control the disturbances are modeled as realizations of stochastic
processes. See Figures 2.3 and 2.4 for some typical, but mutually quite different,
disturbance characteristics. The disturbances may in some cases be separately mea-
surable, but in the typical situation they are noticeable only via their effect on the
output. If the impulse response of the system is known, then of course the actual
value of the disturbance v(f) can be calculated from (2.8) at time ¢.

The assumption of Figure 2.2 that the noise enters additively to the output
implies some restrictions. Sometimes the measurements of the inputs to the system
may also be noise corrupted (‘“‘error-in-variable” descriptions). In such cases we
take a pragmatic approach and regard the measured input values as the actual
inputs u(?) to the process, and their deviations from the true stimuli will be propa-
gated through the system and lumped into the disturbance v (9) of Figure 2.2.

Characterization of Disturbances

The most characteristic feature of a disturbance is that its value is not known
beforehand. Information about past disturbances could, however, be important for

Tension

16

time

Figure 2.4 Tension of paper in the dryer
part of a paper machine.
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making qualified guesses about coming values. It is thus natural to employ a proba-
bilistic framework to describe future disturbances. We then put ourselves at time ¢
and would like to make a statement about disturbances at times ¢ + k, k=1. A
complete characterization would be to describe the conditional joint probability
density function for {v(¢t + k), k =1}, given {v(s), s =t}. This would, however, in
most cases be too laborious, and we shall instead use a simpler approach.

Let v(#) be given as

wo=§hmya—@ (2.9)

where {e(¢)} is a sequence of independent (identically distributed) random variables
with a certain probability density function. Although this description does not allow
completely general characterizations of all possible probabilistic disturbances, it is
versatile enough for most practical purposes. In Section 3.1 we shall show how the
description (2.9) allows predictions and probabilistic statements about future distur-
bances. For normalization reasons, we shall usually assume that /4 (0) = 1, which is
no loss of generality since the variance of e can be adjusted.

It should be made clear that the specification of different probability density
functions (PDF) for {e(f)} may result in very different characteristic features of the
disturbance. For example, the PDF

e( =0, with probability 1 — p

- : s (2.10)
e(=r, with probability p

where r is a normally distributed random variable: r € N(0,y) leads to, if . is a small
number, disturbance sequences with characteristic and “deterministic” profiles
occurring at random instants. See Figure 2.5. This could be suitable to describe
“classical” disturbance patterns, steps, pulses, sinusoids, and ramps (cf. Figure
2.3!). On the other hand, the PDF

e() € N(O,\) 2.11)
v(t)
2
04
-2
Figure 2.5 A realization of the process :
(2.9) with e subject to (2.10). 0 50 t
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vit)

0 -
_6 =
Figure 2.6 A realization of the same
Y process (2.9) as in Figure 2.5, but with e
0 50 t  subject to (2.11).

gives a totally different picture. See Figure 2.6. Such a pattern is more suited to
describe measurements noises and irregular and frequent disturbance actions of the
“input type.”

Often we only specify the second-order properties of the sequence {e(f)}, that
is, the mean and the variances. Note that (2.10) and (2.11) can both be described as
“a sequence of independent random variables with zero mean values and variances
N7 [N = py for (2.10)], despite the difference in appearance.

Remark. Notice that {e(f)} and {v(f)} as defined previously are stochastic
processes (i.e., sequences of random variables). The disturbances that we observe
and that are added to the system output as in Figure 2.2 are thus realizations of the
stochastic process {v(f)}. Strictly speaking, one should distinguish in notation
between the process and its realization, but the meaning is usually clear from the
context, and we do not here adopt this extra notational burden. Often one has
occasion to study signals that are mixtures of deterministic and stochastic com-
ponents. A framework for this will be discussed in Section 2.3.

Covariance Function

With the description (2.9) of v(f), we can compute the mean as

Evd = 3 h(k)Ee(t — k) = 0 (2.12)
and the covariance as .
Ev(v(t — 7) 2 2 h(k)h(s)Ee(t — K)e(t — 7 — s)
io 2 h(k)h(s)d(k — T — SN (2.13)
i h(k)h(k — 7)
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Here h(r) = 0if r < 0. We note that this covariance is independent of ¢ and call
R()=Ev(@)v(t — 1) (2.14)

the covariance function of the process v. This function, together with the mean,
specifies the second-order properties of v. These are consequently uniquely defined
by the sequence {k (k)} and the variance X of e. Since (2.14) and Ev (¢) do not depend
on ¢, the process is said to be stationary.

Transfer Functions

It will be convenient to introduce a shorthand notation for sums like (2.8) and
(2.9), which will occur frequently in this book. We introduce the forward shift
operator q by

-

qu() =u(t +1)
and the backward shift operator q*:
q u@®) =u(t-1)
We can then write for (2.6)

y(@® = ’Elg(k)u(t —k= Elg(k)(q “u (1)

® (2.15)
= [,Z,lg(k)q ”"]u(t) = G(qQu(@®
where we introduced the notation
G(g) = T g(kg™ (2.16)

We shall call G (q) the transfer operator or the transfer function of the linear system
(2.6). Notice that (2.15) thus describes a relation between the sequences u‘ and y’.

Remark. We choose g as argument of G rather than ¢~' (which perhaps
would be more natural in view of the right side) in order to be in formal agreement
with z-transform and Fourier-transform expression. Strictly speaking, the term
transfer function should be reserved for the z-transform of {g (k)}7, that is,

6@ =3 gz @.17)
but we shall sometimes not observe thatk;(I)int. |
Similarly with
H(g) = 3 h(k)g™ (2.18)
we can write
v(®) = H(q)e(9) (2.19)
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for (2.9). Our basic description for a linear system with additive disturbance will
thus be

y(t) = G(qu(t) + H(g)e(t) (2.20)

with {e(f)} as a sequence of independent random variables with zero mean values
and variances A.

Continuous-time Representation and
Sampling Transfer Functions (*)

For many physical systems it is natural to work with a continuous-time repre-
sentation (2.1), since most basic relationships are expressed in terms of differential
equations. With G.(s) denoting the Laplace transform of the impulse response
function {g (1)} in (2.1), we then have the relationship

Y(s) = G(s)U(s) (2.21)

between Y (s) and U(s), the Laplace transforms of the output and input, respec-
tively. Introducing p as the differentiation operator, we could then write

y(®) = Gp)u(?) (2.22)
as a shorthand operator form of (2.1) or its underlying differential equation. Now,
(2.1) or (2.22) describes the output at all values of the continuous time variable ¢. If
{u()} is a known function (piecewise constant or not), then (2.22) will of course also
serve as a description of the output of the sampling instants. We shall therefore
occasionally use (2.22) also as a system description for the sampled output values,
keeping in mind that the computation of these values will involve numerical solution
of a differential equation. In fact, we could still use a discrete-time model (2.9) for
the disturbances that influence our discrete-time measurements, writing this as

y(&) = G(pu(®) + H(ge(®), t=12,... (2.23)
Often, however, we shall go from the continuous-time representation (2.22) to the
standard discrete-time one (2.15) by transforming the transfer function

G{p)— Gr(9 (2.24)

T here denotes the sampling interval. When the input is piecewise constant over the
sampling interval, this can be done without approximation, in view of (2.4). See
Problem 2G.4 for a direct transfer-function expression, and equations (4.65) to
(4.68), for numerically more favorable expressions. One can also apply approximate
formulas that correspond to replacing the differentiation operator p by a difference
approximation. We thus have the Euler approximation

Gr(g) = Gc(q—;—l) (2.25)

(*)Denotes sections and subsections that are optional reading; they can be omitted without
serious loss of continuity. See Preface.

20 Time-Invariant Linear Systems



and Tustin’s formula

Gr@) ~ G{34) (2.26)

See Astrom and Wittenmark (1984) for a further discussion.
Some Terminology

The function G(z) in (2.17) is a complex-valued function of the complex
variable z. Values B, such that G(B;) = 0, are called zeros of the transfer function
(or of the system), while values o; for which G (z) tends to infinity are called poles.
This coincides with the terminology for analytic functions (see, e.g., Ahlfors, 1979).
If G(z) is a rational function of z, the poles will be the zeros of the denominator
polynomial. .

We shall say that the transfer function G (g) (or “the system G or “the filter
G”) is stable if

G@)= 2g(kg™ 2 lgkl<w (2.27)

The definition (2.27) coincides with the system theoretic definition of
bounded-input, bounded-output (BIBO) stability (e.g. Brockett, 1970): If an input
{u(®} to G(q) is subject to |u(f)] = C, then the corresponding output z(f) =

G(q)u(t) will also be bounded, |z (#)| = C’, provided (2.27) holds. Notice also that
(2.27) assures that the (Laurent) expansion

G(2)= 2 g(k)z™*
k=1
is convergent for all |z| = 1. This means that the function G(z) is analytic on and

outside the unit circle. In particular, it then has no poles in that area.
We shall often have occasion to consider families of filters G,(g), o € «:

Guq) = 2 glk)g™*, acd (2.28)
k=1 R
We shall then say that such a family is uniformly stable if
lgu(K)| < g(k), Vo € o, 3 g(k) < (2.29)
k=1

Sometimes a slightly stronger condition than (2.27) will be required. We shall say
that G (q) is strictly stable if

S kgl <o (2.30)

Notice that, for a transfer function that is rational in g, stability implies strict
stability (and, of course, vice versa). See Problem 2T.3.
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Finally, we shall say that a filter H(q) is monic if its zeroth coefficient is 1 (or
the unit matrix):

H@ = Sh®g*  ho=1 @.31)

2.2 FREQUENCY-DOMAIN EXPRESSIONS
Sinusoid Response and the Frequency Function

Suppose that the input to the system (2.6) is a sinusoid:

u(t) = cos ot (2.32)
It will be convenient to rewrite this as
u(f) = Ree™

with Re denoting “real part.” According to (2.6), the corresponding output will be
y(@) = 2 g(k)Re e™¢~P =Re 2 g(k)e™~»
k=1 k=1

= Re{e“’"- i g(k)e""“"} = Refe™ - G(e™)} (2.33)
= |G (e™)| cos (wt + ¢)
where
¢ = argG(e™) (2.34)

Here, the second equality follows since the g (k) are real and the fourth equality
from the definition (2.16) or (2.17). The fifth equality follows straightforward rules

for complex numbers.
In (2.33) we assumed that the input was a cosine since time minus infinity. If
u(f) = 0, ¢ <0, we obtain an additional term

—Refe™ >, g(k)e ™}
k=t
in (2.33). This term is dominated by
3 lg(0)

and therefore is of transient nature (tends to zero as ¢ tends to infinity), provided
that G(g) is stable. ‘
In any case, (2.33) tells us that the output to (2.32) will also be a cosine of the
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same frequency, but with an amplitude magnified by |G(e™)| and a phase shift of
arg G (e™) radians. The complex number

G(e™) (2.35)

which is the transfer function evaluated at the point z = e*, therefore gives full
information as to what will happen in stationarity, when the input is a sinusoid of
frequency w. For that reason, the complex-valued function

G(e™), -T<=osTw (2.36)

is called the frequency function of the system (2.6). It is customary to graphically
display this function as log|G (¢*)| and arg G (e™) plotted against log w in a Bode
plot. The plot of (2.36) in the complex plane is called the Nyquist plot. These
concepts are probably better known in the continuous-time case, but all their basic
properties carry over to the sampled-data case.

Perlodograms of Signals over Finite Intervals

-~

Consider the finite sequence of inputs u(¢), t = 1,2,... ,N. Let us define the
function Uy(w) by

N
Un(w) = —= 3 u() e 2.37)
N1
The values obtained for w = 2nwk/N, k = 1,... N, form the familiar discrete Fou-

rier transform (DFT) of the sequence u”. We can then represent u (f) by the inverse
DFT as

“0 = 75 2, U 238)

To prove this, we insert (2.37) into the right side of (2.38), giving

¥ 2, Zuoen(- ) ol 258)

k=1s=1

=% 2 u(s)lzlexp(-ZW) = %sglu(s)N- 3t —s)=u()

s=1

Here we used the relationship

1 § 2uirkin _ [ 1 r=0
N ~=° —{O, 1=r<N (2.39)
From (2.37) we note that Uy(w) is periodic with period 27:
Un(o + 2m) = Uy(w) (2.40)
Also, since u(?) is real,
Un(-w) = Un(w) (2.41)
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where the overbar denotes the complex conjugate. The function Uy(w) is therefore
uniquely defined by its values over the interval [0,7]. It is, however, customary to
consider Uy(w) for —m < o =<, and in accordance with this (2.38) is usually

written
N/2

U =—= X UnEE)er (2.42)
N k=-ni2+1

making use of (2.40) and the periodicity of e. In (2.42) and elsewhere we assume N
to be even; for odd N analogous summation boundaries apply.

In (2.42) we represent the signal u(¢) as a linear combination of e for N
different frequencies w. As is further elaborated in Problem 2D.1, this can also be
rewritten as sums of coswt and sinwt for the same frequencies, thus avoiding
complex numbers.

The number Uy(2wk/N) tells us the “weight” that the frequency o = 2wk/N
carries in the decomposition of {u(f)}\- ;. Its absolute square value |Uy Qmk/N)|* is
therefore a measure of the energy contribution of this frequency to the “signal
effect.” This value

[Un(w)? (2.43)

is known as the periodogram of the signal u(f), t = 1,2,...,N.
Parseval’s relationship,
N

>

k=1

U = Zu (2.44)

reinforces the interpretation that the energy of the signal can be decomposed into
energy contributions from different frequencies. Think of the analog decomposition
of light into its spectral components!
Example 2.1 Periodogram of a Sinusoid
Suppose that

u(t) = Acos wet (2.45)

where wo = 2m/N, for some integer Np > 1. Consider the intervalt = 1,2,. .. ,N, where Nisa
multiple of No: N = s-N,. Writing

cos ot = 5[ + e ]

gives
1 S A, .
Unl(w) = — E _[el(u)o—w)t+e—l(u0+w)t
MO =N 22 ]
Using (2.39), we find that
2
N-%, ifw=zwo=?v—“=2—1’y
|Un(w)* = 0 (2.46)
0 if w= 2—’"-]5 k s
b N >

The periodogram thus has two spikes in the interval [—, m]. |
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Example 2.2 Periodogram of a Periodic Signal

Suppose u(f) = u(t + No) and we consider the signal over the interval [1, N], N = s - N,.
According to (2.42), the signal over the interval [1, Ny] can be written

Np/2

1 .
u@ = > A,e¥iriNo 2.47
( ) \/_N; r=-No/2+1 ( )
with
1 X .
A = v 2 u(f)e /N (2.48)
or=1

Since u is periodic, (2.47) applies over the whole interval [1,N]. It is thus a sum of N,
sinusoids, and the results of the previous example (or straightforward calculations) show that

N
s AR, ifw=%"0r, r=0,i1i---1‘70
2=
|Un(w)] . pomk (2.49)
’ N '

-~

The periodograms of Examples 2.1 and 2.2 turned out to be well behaved. For
signals that are realizations of stochastic processes, the periodogram is typically a
very erratic function of frequency. See Figure 2.8 and Lemma 6.2.

Transformation of Periodograms(*)

As a signal is filtered through a linear system, its periodogram changes. We
show next how a signal’s Fourier transform is affected by linear filtering. Results for
the transformation of periodograms are then immediate.

Theorem 2.1. Let {s(#)} and {w(¢)} be related by the strictly stable system
G(9):

s = G(pw() (2.50)
The input w(¢) for ¢ < 0 is unknown, but obeys |w ()] < Cy for all #. Let
Sn(w) = \/_ tj_vl s(e (2.51)
Wi(w) = \/_ ~ 2 w(f)e (2.52)
Then
Sn(®) = G(e*)W(w) + Ry(w) (2.53)
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where
Cs
|Ry(w)| = 2C, \/IT/ (2.54)

with

w©

= 3 klg(w) (2.55)

Proof. We have by definition

Sy(w) = 2 s(f)e ™ = % g g(w( — ke ™

K 1

= [change variables:t — k = 7] = % E g(k)e ™. > w(t)e
- r=1-k
Now
Wa(w) — 2 w(r)e ™
‘r =1-k

l—l— i w(@e ™| + l—l— S wie ™| =X k-C, (2.56)

VN . VN v % "~ VN " )
Hence

5u(@) — GEW@I = | S g J= S wme™ - W)

1=1—-k

‘ ~\/2—_- 2 Ik - g (k) Cye o] < 2SS0

and (2.53) to (2.55) follow. W

Corollary. Suppose {w(?)} is periodic with period N. Then Ry(w) in (2.53) is
zero for w = 2wk /N.

Proof. The left side of (2.56) is zero for a periodic w(7) at ® = 2wk/N. B

2.3 SIGNAL SPECTRA

The periodogram defines, in a sense, the frequency contents of a signal over a finite
time interval. This information may, however, be fairly hidden due to the typically
erratic behavior of a periodogram as a function of w. We now seek a definition of a
similar concept for signals over the interval ¢ € [1,). Preferably, such a concept
should more clearly demonstrate the different frequency contributions to the signal.

A definition for our framework is, however, not immediate. It would perhaps
be natural to define the spectrum of a signal s as

lim |Sy(w)? (2.57)
N—x
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but this limit fails to exist for many signals of practical interest. Another possibility
would be to use the concept of the spectrum, or spectral density, of a stationary
stochastic process as the Fourier transform of its covariance function. However, the
processes that we consider here are frequently not stationary, for reasons that are
described later. We shall therefore develop a framework for describing signals and
their spectra that is applicable to deterministic as well as stochastic signals.

A Common Framework for Deterministic
and Stochastic Signals

In this book we shall frequently work with signals that are described as
stochastic processes with deterministic components. The reason is, basically, that
we prefer to consider the input sequence as deterministic, or at least partly deter-
ministic, while disturbances on the system most conveniently are described by
random variables. In this way the system output becomes a stochastic process with
deterministic components. For (2.20) we find that

Ey() = G(qu®

so {y ()} is not a stationary process.
To deal with this problem, we shall consider signals {s(#)} subject to the
following assumptions.

@) Es(=m,(n), |m(|=C Vit
(ii) Es(9s() = R, (t n, IR A=C (2.58)
lim N 2 R(t,t — 1) =R,(r), V1 (2.59)

When (i) and (ii) hold, we say that {s(#)} is quasi-stationary. Here expectation E is
with respect to the “‘stochastic components” of s(2). If {s (¢)} itself is a deterministic
sequence, the expectation is without effect and quasi-stationarity then means that
{s ()} is a bounded sequence such that the limits

N

R,(7) = hm —1— 2 s(Hs(t — 1)

exist. If {s(s)} is a stationary stochastlc process, (2.58) and (2.59) are trivially
satisfied, since then Es(f)s(t —t) = R,(r) does not depend on . :
For easy notation we introduce the symbol E by

Ef() = lim 3 Ef® (2.60)

with an implied assumption that the limit exists when the symbol is used. Assump-
tion (2.59), which simultaneously is a definition of R, (), then reads

Es()s(t = 7) = Ry(v) (2.61)
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Sometimes, with some abuse of notation, we shall call R, (1) the covariance function
of s, keeping in mind that this is a correct term only if {s (#)} is a stationary stochastic
process with mean value zero.

Similarly, we say that two signals {s (f)} and {w (¢)} are jointly quasi-stationary if they
both are quasi-stationary and if, in addition, the cross-covariance function

R,(7) = Es(w(t — 7) (2.62)

exists. We shall say that jointly quasi-stationary signals are uncorrelated if their
cross-covariance function is identically zero.

Definition of Spectra

When limits like (2.61) and (2.62) hold, we define the (power) spectrum of
{s(}as

®y(w) = » Ry(r)e (2.63)

T= —o

and the cross spectrum between {s (¢)} and {w (¢)} as

P, (0) = i Ry.(v)e ™ (2.64)

T= —®

provided the infinite sums exist. In the sequel, as we talk of a signal’s “spectrum,”
we always implicitly assume that the signal has all the properties involved in the
definition of spectrum.

While &, (w) always is real, ®;, (w) is in general a complex-valued function of
w. Its real part is known as the cospectrum and its imaginary part as the quadrature
spectrum. The argument arg ®,,, (w) is called the phase spectrum, while |®,, ()] is
the amplitude spectrum.

Note that, by definition of the inverse Fourier transform, we have

Es’(j) = R(0) = 5 f: ®,(0)do (2.65)

Example 2.3 Spectrum of a Sinusoid
Consider again the signal (2.45), now extended to the interval [1,0). We have

% 5: Eu(ku(k — 1) = % % A*cos(wok) cos(wo(k — 7)), =0 (2.66)

(Expectation is of no consequence since u is deterministic.} Now
cos (wok) cos (wo(k — 7)) = 3(cos Qwok — wot) + cOS woT)

which shows that

— AZ
Eu(u(t —7) = 5 Coswor = R.(7)
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The spectrum now is

had 2 . A2
Bu(w) = 3 A?cos(w)e-“" = 2 — @) + 8w + wg))-2m  (267)
where 8 is Dirac’s delta function. This result fits well with the finite interval expression

(2.46). A

Example 2.4 Stationary Stochastic Processes

Let {v (1)} be a stationary stochastic process with covariance function (2.14). Since (2.59) then
equals (2.14), our definition of spectrum coincides with the conventional one. Suppose now
that the process v is given as (2.9). Its covariance function is then given by (2.13). The
spectrum is

)

@)= 3 xS h(kh(k -1)

7= - k = max (0, )

o

x> > hKe ™ h(k — 1)e* e

T = —ok = max(0,7)

=[k—-7=s5]=A i h(s)e™ i h(k)e ™ = \H (e™)]?

s=0

using (2.18). This result is very important for our future use:

The stochastic process described by v(f) = H(g)e(t), where {e(t)} is a sequence of
independent random variables with zero mean values and covariances A, has the
spectrum

D, (w) = NH(e") (2.68)

This result, which was easy to prove for the special case of a stationary stochastic
process, will be proved in the general case as Theorem 2.2 later in this section. Figure 2.7
shows the spectrum of the process of Figures 2.5 and 2.6, while the periodogram of the
realization of Figure 2.6 is shown in Figure 2.8. ll
Example 2.5 Spectrum of a Mixed Deterministic and Stochastic Signal
Consider now a signal

s =u@+v(@) (2.69)
where {u ()} is a deterministic signal with spectrum ®, (») and {v (#)} is a stationary stochastic
process with zero mean value and spectrum ®, (w). Then
Es(@®s(t — 1) = Eu(u(t — 1) + Eu(@®v(t - 1)

+Ev(tu(t - 7) + Ev()v(t — 1) = R(1) + R,(7) (2.70)
since Ev(f)u(t — ) = 0. Hence
Dy(w) = Py(w) + y(w) (2.71)
n
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Figure 2.7 The spectrum of the process
T w v(®) —1.5v(@ — 1) + 0.7v(t — 2)=e(p) +
0.01x 0= T (radfs) 0.5e(t — 1), {e(¥)} being white noise.

Connections to the Periodogram (*)

While the original idea (2.57) does not hold, a conceptually related result can
be proved; that is, the expected value of the periodogram converges weakly to the

spectrum:
E|Sx(0)f 3> P:(w) (2.72)
By this is meant that
lim [ Elsv@P¥() do = | @,(0)¥(w) do (2.73)
for all sufficiently smooth functions ¥(w).
We have
[V ()2
1000
100
10
“ -
T © Figure 2.8 The periodogram of the real-
001 0.1%

x (rad/s)  ization of Figure 2.6.
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Lemma 2.1. Suppose that {s(f)} is quasi-stationary with spectrum @, (»). Let

N
Sn(w) = —= 2, s()e™™
W@ = T 2 s()
and let ¥(w) be an arbitrary function || = m with Fourier coefficients a, such that
2 la| <o
Then (2.73) holds.
Proof
1 N N
E|Sx(o)]? =N, 2 > Es(k)s(€)e®—9
k=1¢=1 N1 (2.74)
=[t—k=1= 2 Ry(®e™
t=~(N-1)
where
1 N
Ry(?) = N, 2 Es(k)s(k — 7) (2.75)

with the convention that s (k) is taken as zero outside the interval [1, N]. Multiplying
(2.74) by ¥(w) and integrating over [—m, ] gives

- N-1
f E|Sy(@)¥(w)do= 2 Ry(t)a,
-w r=—(N-1)
by the definition of a,. Similarly, allowing intérchange of summation and
integration, we have

f P (0)¥(w)do = E R(7)a,

T = -0

Hence

f E|Sx(0)P¥(w) do — f_":bs (©)¥(w) do

= 2 af[RN (T) - R; (T)] + I lzNa'rR: (T)

1=-(N-1)

Problem 2D.5 now completes the proof. B

Notice that for stationary stochastic processes the result (2.72) can be
strengthened to “ordinary” convergence (see Problem 2D.3). Notice also that, in
our framework, results like (2.72) can be applied also to realizations of stochastic
processes simply by ignoring the expectation operator. We then view the realization
in question as a given ‘““deterministic”’ sequence, and will then, of course, have to
require that the conditions (2.58) and (2.59) hold for this particular realization
[disregard “E” also in (2.58) and (2.59)].
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Transformation of Spectra by Linear Systems

As signals are filtered through linear systems, their properties will change. We
saw how the periodogram was transformed in Theorem 2.1 and how white noise
created stationary stochastic processes in (2.68). For spectra we have the following
general result.

Theorem 2.2. Let {w(f)} be a quasi-stationary signal with spectrum &, (w),
and let G(q) be a stable transfer function. Let

s(t) = G(gw(®) (2.76)

Then {s(¢)} is also quasi-stationary and
®,(w) = |G(e™)] Pu(w) 2.77)
@, (0) = G(e")Pu(w) (2.78)

Proof. The proof is given in Appendix 2A.

Corollary. Let {y(?)} be given by

y(® = G(@u® + H(ge() (2.79)

where {u(f)} is a quasi-stationary, deterministic signal with spectrum ®,(w), and
{e(9)} is white noise with variance \. Let G and H be stable filters. Then {y (9} is
quasi-stationary and

D, (w) = |G (e*)Pu(w) + NH(e)} (2.80)
D, (0) = G(e*)Pu(w) (2.81)

Proof. The corollary follows from the theorem using Examples 2.4 and
25. 1

Spectral Factorization

Typically, the transfer functions G (g) and H(q) used here are rational func-
tions of ¢. Then results like (2.68) and Theorem 2.2 describe spectra as real-valued
rational functions of e* (which means that they also are rational functions of cos w).

In practice, the converse of such results is of major interest: Given a spectrum
®,(w), can we then find a transfer function H(g) such that the process v(f) =
H(g)e(?) has this spectrum with {e(#)} being white noise? It is quite clear that this is
not possible for all positive functions ®, (»). For example, if the spectrum is zero on
an interval, then the function H(z) must be zero on a portion of the unit circle. But
since by necessity H(z) should be analytic outside and on the unit circle for the
expansion (2.18) to make sense, this implies that H(z) is zero everywhere and
cannot match the chosen spectrum.

The exact conditions under which our question has a positive answer are
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discussed in texts on stationary processes, such as Wiener (1949) and Rozanov
(1967). For our purposes it is sufficient to quote a simpler result, dealing only with
spectral densities ®, (») that are rational in the variable e* (or cos w).

Spectral factorization: Suppose that ®,(w) > 0 is a rational function of
cos w (or e*). Then there exists a monic rational function of z, R(z), with no poles
and no zeros on or outside the unit circle such that

D, (w) = MR (e®)]
The proof of this result consists of a straightforward construction of R, and it can be

found in standard texts on stochastic processes or stochastic control (e.g., Rozanov,
1967; Astrom, 1970).

Example 2.6 ARMA Processes

If a stationary process {v ()} has rational spectrum ®, (»), we can thus represent it as

v() = R(q)e(?) (2.82)
where {e ()} is white noise with variance . Here R(q) is a rational function
C@
R(q) =——=
@=3 @

Cl@=1+aqg™ '+ - +cq™
A@=1+ag+ - +a,q™™
so that we may write
v +tav@ -+ tavit—n)=e@+celt—1)+- - +c,e(t—n) (2.83)

for (2.82). Such a representation of a stochastic process is known as an ARMA model. If
n. = 0, we have an autoregressive (AR) model:

vidt+tavt -+ - +a, vt —n)=e( (2.84)
And if n, = 0, we have a moving average (MA) model:

vid=e(® +ciet — 1)+ -+ +crelt —n) (2.85)
]

The spectral factorization concept is important since it provides a way of
representing the disturbance in the standard form v = H(g)e from information
about its spectrum only. The spectrum is usually a sound engineering way of
describing properties of signals: ‘““The disturbances are concentrated around 50 Hz”’
or “We are having low-frequency disturbances with little effect over 1 rad/s.”
Rational functions are able to approximate functions of rather versatile shapes.
Hence the spectral factorization result will provide a good modeling framework for
disturbances.
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Second-order Properties

The signal spectra, as defined here, describe the second-order properties of the
signals (for stochastic processes, their second-order statistics, i.e., first and second
moments). Recall from Section 2.1 that stochastic processes may have very different
looking realizations even if they have the same covariance function (see Figures 2.5
and 2.6)! The spectrum thus describes only certain aspects of a signal. Nevertheless,
it will turn out that many properties related to identification depend only on the
spectra of the involved signals. This motivates our detailed interest in the second-
order properties.

2.4 SINGLE REALIZATION BEHAVIOR AND ERGODICITY RESULTS (*)

All the results of the previous section are also valid, as we pointed out, for the
special case of a given deterministic signal {s (®}. Definitions of spectra, their trans-
formations (Theorem 2.2) and their relationship with the periodogram (Lemma
2.1) hold unchanged; we may just disregard the expectation E and interpret Ef (¢)
as

1 N
im 270
There is a certain charm with results like these that do not rely on a probabilistic
framework: we anyway observe just one realization, so why should we embed this
observation in a stochastic process and describe its average properties taken over an
ensemble of potential observations? There are two answers to this question. One is
that such a framework facilitates certain calculations. Another is that it allows us to
deal with the question of what would happen if the experiment were repeated.

Nevertheless, it is a valid question to ask whether the spectrum of the signal
{s(?)}, as defined in a probabilistic framework, differs from the spectrum of the
actually observed, single realization were it to be considered as a given, de-
terministic signal. This is the problem of ergodic theory, and for our setup we have
the following fairly general result.

Theorem 2.3. Let {s()} be a quasi-stationary signal. Let Es(?) = m(?).
Assume that

s@) —m@) =v(@) = 2 h(ke( — k)= H(qe() (2.86)
k=0
where {e(?)} is a sequence of independent random variables with zero mean values,
Ee*(t) = \,, and bounded fourth moments, and where {H,(q),t = 1,2,...}is a uni-
formly stable family of filters. Then, with probability 1 as N tends to infinity,

~ ﬁJ) s@s(t — 1) — Es()s(t — 1) = R(?) (2.87a)
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N

L 3 [s@m( — ) ~ Es@m( — )]0 (2.87b)
Al, ﬁv‘, s@v(@E -7 - Es@v(t—7)]—0 (2.87¢)

=1

The proof is given in Appendix 2B. B

The theorem is quite important. It says that, provided the stochastic part of
the signal can be described as filtered white noise as in (2.86), then

the spectrum of an observed single realization of {s ()}, computed as for a deterministic
signal, coincides, with probability 1, with that of the process {s (#)}, defined by ensem-
ble averages (E) as in (2.61).

This de-emphasizes the distinction between deterministic and stochastic signals
when we consider second-order properties only. A signal {s (f)} whose spectrum is
@,(w) = N may, for all purposes related to second-order properties, be regarded as a
realization of white noise with variance \.

The theorem also gives an answer to the question of whether our “theoretical”
spectrum, defined in (2.63) using the physically unrealizable concepts of E and lim,
relates to the actually observed periodogram (2.43). According to Theorem 2.3 and
Lemma 2.1, “smoothed” versions of |Sy(w)f* will look like ®(w) for large N.
Compare Figures 2.7 and 2.8. This link between our theoretical concepts and the
real data is of course of fundamental importance. See Section 6.3.

2.5 MULTIVARIABLE SYSTEMS (*)

So far, we have worked with systems having a scalar input and a scalar output. In
this section we shall consider the case where the output signal has p components and
the input signal has m components. Such systems are called multivariable. The extra
work involved in dealing with models of multivariable systems can be split up into
two parts:

1. The easy part: mostly notational changes, keeping track of transposes, and
noting that certain scalars become matrices and might not commute.

2. The difficult part: multioutput models have a much richer internal structure,
which has the consequence that their parametrization is nontrivial. See
Appendix 4A. (Multiple-input, single-output, MISO, models do not expose
these problems.)

Let us collect the p components of the output signal into a p-dimensional
column vector y (f) and similarly construct an m-dimensional input vector u (?). Let
the disturbance e(f) also be a p-dimensional column vector. The basic system
description then looks just like (2.20):

y(®) = G(q)u() + H(g)e(?) (2.88)
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where now G(q) is a transfer function matrix of dimension p X m and H(q) has
dimension p X p. This means that the i, j entry of G(g), denoted by Gj;(g), is the
scalar transfer function from input number j to output number i. The sequence {e(#)}
is a sequence of independent random p -dimensional vectors with zero mean values
and covariance matrices E e(f)e’(f) = A.

Now, all the development in this chapter goes through with proper interpreta-
tion of matrix dimensions. Note in particular the following:

© The impulse responses g(k) and h(k) will be p X m and p X p matrices,
respectively, with norms

gl = (3 lesf)” (2.89)

replacing absolute values in the definitions of stability.
O The definitions of covariances become [cf. (2.59)]

Es(s™(t — 7) = R(7) (2.90)
Es(®w'(t = 1) = R, (7) (2.91)
These are now matrices, with norms as in (2.89).
O Definitions of spectra remain unchanged, while the counterpart of the cor-
ollary to Theorem 2.2 reads
®,(0) = G(e*)P.(w)G(e™™) + H(e*)AH (e ™) (2.92)
Notice that the definition of spectra for vector signals implicitly defines also

cross-spectra between the components of the signal. See also Problem 2G.3.

O The spectral factorization result now reads: Suppose that ®,(w) isa p X p
matrix that is positive definite for all @ and whose entries are rational func-
tions of cos o (or e*). Then there exists a p X p monic matrix function H(z)
whose entries are rational functions of z (or z™') such that the (rational)
function det H(z) has no poles and no zeros on or outside the unit circle. (For
a proof, see Theorem 10.1 in Rozanov, 1967).

O The formulation of Theorem 2.3 carries over without changes. (In fact, the
proof in Appendix 2B is carried out for the multivariable case).

2.6 SUMMARY

We have established the representation

y(®) = G(qQu(®) + H(g)e () (2.93)

as the basic description of a linear system subject to additive random disturbances.
Here {e(f)} is a sequence of independent random variables with zero mean values
and variances \ (in the multioutput case, covariance matrices A). Also,
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G@=2¢ ik)q *
H(g)=1+ E‘lh(k)q *
The filter G(gq) is stable if
2 gk <=

As the reader no doubt is aware of, other particular ways of representing
linear systems, such as state-space models and difference equations, are quite
common in practice. These can, however, be viewed as particular ways of represent-
ing the sequences {g(k)} and {h(k)}, and they will be dealt with in some detail in
Chapter 4.

We have also discussed the frequency function G (e™), bearing information
about how an input sinusoid of frequency o is transformed by the system.
Frequency-domain concepts in terms of the frequency contents of input and output
signals were also treated. The Fourier transform of a finite-interval signal was
defined as ‘

N

Un(w) = %v S u@e™ (2.94)

A signal s(¢) such that the limits
Es()s(t — 1) = R,(7)
exist was said to be quasi-stationary.
N

(Ef @) = lim 3 ZE£ ()

Then the spectrum of s (%) is defined as

O, = 3 Rre (2.95)

For y generated as in (2.93) with {u(¢)} and {e(?)} independent, we then have
D, (w) = |G (e™)[*Du(w) + NH (e™)

2.7 BIBLIOGRAPHY

The material of this chapter is covered in many textbooks on systems and signals.
For a thorough elementary treatment, see Oppenheim and Willsky (1983). A dis- -
cussion oriented more toward signals as time series is given in Brillinger (1981),
which also contains several results of the same character as our Theorems 2.1 and
2.2
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A detailed discussion of the sampling procedure and connections between the
physical time-continuous system and the sampled-data description (2.6) is given in
Chapter 4 of Astrém and Wittenmark (1984). Chapter 6 of that book also contains
an illuminating discussion of disturbances and how to describe them mathe-
matically. The idea of describing stochastic disturbances as linearly filtered white
noise goes back to Wold (1938).

Fourier techniques in the analysis and description of signals go back to the
Babylonians. See Oppenheim and Willsky (1983), Section 4.0, for a brief historical
account. The periodogram was evidently introduced by Schuster (1894) to study
periodic phenomena without having to consider relative phases. The statistical
properties of the periodogram were first studied by Slutsky (1929). See also
Brillinger (1983). Concepts of spectra are intimately connected to the harmonic
analysis of time series, as developed by Wiener (1930), Wold (1938), Kolmogorov
(1941a), and others. Useful textbooks on these concepts (and their estimation)
include Jenkins and Watts (1968) and Brillinger (1981). Our definition of the Fou-
rier transform (2.37) with summation from 1 to N and a normalization with 1/VN
suits our purposes, but is not standard. The placement of 2 in the definition of the
spectrum or in the inverse transform, as we have it in (2.65), varies in the literature.
Our choice is based on the wish to let white noise have a constant spectrum whose
value equals the variance of the noise. The particular framework chosen here to
accommodate mixtures of stochastic processes and deterministic signals is appar-
ently novel, but has a close relationship to the classical concepts.

The result of Theorem 2.2 is standard when applied to stationary stochastic
processes. See, for example, James, Nichols, and Phillips (1947) or Astrom (1970).
The extension to quasi-stationary signals appears to be new.

Spectral factorization turned out to be a key issue in the prediction of time
series. It was formulated and solved by Wiener (1949) and Paley and Wiener (1934).
The multivariable version is treated in Youla (1961). The concept is now standard in
textbooks on stationary processes (see, e.g., Rozanov, 1967).

The topic of single realization behavior is a standard problem in probability
theory. See, for example, Ibragimov and Linnik (1971), Billingsley (1965), or Chung
(1974) for general treatments of such problems.

2.8 PROBLEMS!'
2G.1. Let s(¢) be a p-dimensional signal. Show that
- 1 (™
Els()F = E;«L, tr(®, (w)) dw
2G.2. Let ®,(w) be the (power) spectrum of a scalar signal defined as in (2.63). Show that
(i) ®,;(w)is real.
(ii) ®s(w) =0V .
(iii) ®,(—0) = ®,(w).

+ See the Preface for an explanation of the numbering system.
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2G.3. Lets() = [i (t)] and let its spectrum be

®
_ (D (w) q)yu(“’)]
v =00 oo
Show that @, (w) is a Hermitian matrix: that is,
D, (w) = O (w)

where * denotes transpose and complex conjugate. What does this imply about the
relationships between the cross spectra @, (0), ®,, (w), and by, (—w)?

2G.4. Let a continuous time system representation be given by
y(®) = Ge(p)u(d
The input is constant over the sampling interval T. Show that the sampled input-
output data are related by
y(®) = Gr(qu(®
where

oo esT_l 1
G@=[__ o0 —a

Hint: Use (2.5).
2E.1. A stationary stochastic process has the spectrum
1.25 + cosw
1.64 + 1.6cosw

Describe {v(#)} as an ARMA process.

2E.2. Suppose that {n(»)} and {£(s)} are two mutually independent sequences of independent
random variables with

E"l(‘) = Eg(t) = 0’ E"lz(t) = )\m Egz(t) = )‘E

P, () =

Consider
w(®) =m() + §0) + vE(r - 1)
Determine a MA(1) process
v(i)=e(®) +ce(t — 1)
where {e(#)} is white noise with
Ee()=0, Eée* ()=

such that {w(9)} and {v(9)} have the same spectra; that is, find ¢ and A so that
D, (w) =D, (0).
2E.3. (a) In Problem 2E.2 assume that {n(f)} and {€()} are jointly Gaussian. Show that if
{e(9} also is chosen as Gaussian then the joint probability distribution of the
process {w (9} [i.e., the joint PDFs of w(t,), w(t,), . . . ,w(t,) for any collection of
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time instances #] coincides with that of the process {v (f)}. Then, for all practical
purposes, the processes {v(1)} and {w(t)} are indistinguishable.
(b) Assume now that n(f) € N(0,\,), while

A
1, w.p. 7‘
£H=9-1, w.p. %

0, w.p. 1— A

Show that, although v and w have the same spectra, we cannot find a distribution
for e(f) so that they have the same joint PDFs. Consequently the process w(t)
cannot be represented as an MA(1) process, although it has a second-order equiv-
alent representation of that form.

2E.4. Consider the “state-space description”

2E.5.

2E.6.

40

x(t +1) = fx(®) + w(®
y(@® =hx(®+v(®

where x, f, h, w, and v are scalars. {w(#)} and {v (f)} are mutually independent white
Gaussian noises with variances R; and R, respectively. Show that y () can be repre-
sented as an ARMA process:

y@ +ay@t -1+ - +ayt—n =e()+ce(t—1+ - +ce(t—n)

Determine n, a;, ¢;, and the variance of e(?) in terms of f, #, Ry, and R,. What is the
relationship between e(#), w(f), and v ()?

Consider the system
y(®=G(@u® +v(@
controlled by the regulator
u(t) = — FAqy(® + F9r(®)

where {r(f)} is a quasi-stationary reference signal with spectrum ®,(w). The dis-
turbance {v ()} has spectrum @, (w). Assume that {r ()} and {v (9)} are uncorrelated and
that the resulting closed-loop system is stable. Determine the spectra @, (w), Pu(w),
and ®,. (w).

Consider the system

d
Prid @ +ay()=u(® (2.96)
Suppose that the input u(#) is piecewise constant over the sampling interval
u(t) = s kT st <(k +1)T

(a) Derive a sampled-data system description for w, y (kT).

(b) Assume that there is a time delay of T seconds so that u(#) in (2.96) is
replaced by u(t — T). Derive a sampled-data system description for this case.
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2E.7.

2T.1.

2T.2.

2T.3.

2T.4.

(c) Assume that the time delay is 1.5T so that u(?) is replaced by u(t — 1.57).
Then give the sampled-data description.

Consider a system given by

YO +ay(t —1) =bu(r — 1) + e(®) + ce(t — 1)

where {u(#)} and {e(?)} are independent white noises, with variances K and A, respec-
tively. Follow the procedure suggested in Appendix 2C to multiply the system descrip-
tion by e(s), e(t — 1), u(f), u(t — 1), y(§), and y (¢ — 1), respectively, and take ex-
pectation to show that
R,.(0) =\, Rye(1) = (c — a)A
R,.(0) = 0, Ry.(1) =bp
W+ N+ ¢\ — 2ach
1-4d? ’

(c —a +a’c —ac® — ab?p
1-aq?

R,(0) =" R,(1) ="

Consider a continuous time system (2.1):

oo

yO = g@u(~7dr
Let gr(€) be defined by (2.5), and assume that u (¢) is not piecewise constant, but that
40)
'E u (t) = Cl

Letuc = u ((k +3)T)

and show that
yT) = 2 gr(Quc- ¢ + 1
=1

where
|r kl = Cz . T2
Give a bound for C,.

If the filters Ri(¢q) and R.(q) are (strictly) stable, then show that R,(g)Rx(q) is also
(strictly) stable (see also Problem 3D.1).

Let G(g) be a rational transfer function; that is,

blq"_1+"'+bn
q"+aq” "'+ +a,

G(9) =
Show that if G(q) is stable, then it is also strictly stable.

Consider the time-varying system

x(t+1)=F@Ox(®) + GOu@®)
y(®) = H@®x (o)
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2D.1.

2D.2.
2D.3.

2D.4.

2D.5.

28.1.

Write
v = 3 gloutt - 0

[take g,(k) = O for k > t]. Assume that
F()—F, asto

where F has all eigenvalues inside the unit circle. Show that the family of filters {g.(k),
t =1,2, ...}is uniformly stable.

Consider Uy(w) defined by (2.37). Show that Uv(2m — @) = Un(w) = Un(w) and
rewrite (2.38) in terms of real-valued quantities only.

Establish (2.39).

Let {u(£)} be a stationary stochastic process with R, (1) = Eu(fu(t — 7), and let @, ()
be its spectrum. Assume that

i [TR.(T)| <

Let Un(w) be defined by (2.37). Prove that
E|Uv(0)> ®Pu(w), asN-—o»
This is a strengthening of Lemma 2.1 for stationary processes.
Let G(q) be a stable system. Prove that
1 N
lim = X klg(k)| =0
N N

Hint: Use Kronecker’s lemma: Let ax, b be sequences such that a, is positive and
decreasing to zero. Then Zaib:, < * implies

N
limay 2 b =0

N—o oo 1

(see, e.g., Chung, 1974, for a proof of Kronecker’s lemma).
Let bx(7) be a doubly indexed sequence such that, V7,

by(7)— b(7), as N—x
(but not necessarily uniformly in 7). Let a. be an infinite sequence, and assume that
2laf <o, p(r)|=C v
1

Show that

'yinm[ % a,(bN(T)—b(T))Jr’Z a,b(T)] =0

T=—-N t| > N

Hint: Study Appendix 2A.
In a series of problems in this book we shall develop the basis for an interactive
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software package for system identification. The problems in question are marked with
the letter S. For reasonable effort, it is assumed that the programming is performed in
a high-level environment, such as APL or PC-MATLAB, with basic plotting and
matrix handling routines available.

Write a MACRO
BODEPLOT(G)

that plots the Bode diagram of the transfer function G, entered as a complex-valued
vector G(e**), k =1, 2..., N. Include the option of plotting several curves in the
same diagram.

2C.1. Use the ideas of Appendix 2C to write a program that computes covariances for an
arbitrary ARMA process based on algorithms for linear equations.

APPENDIX 2A: PROOF OF THEOREM 2.2

We carry out the proof for the multivariate case. Let w(s) =0 for s = 0, and
consider

RYD) = 2 Es(9s7t = 1) A1)

=13 S S Ewe - lowc -1 - 070

t=1k=0¢=0
With the convention that w(s) = 0 if s & [0, N], we can write
N N N
R@ =3 3 gy S Ewlt —wie v = g7(0)  (2A2)
k=0€=0 N =
If w(s) # 0, s = 0, then s(f) gets the negligible contribution
5y = 2 gRw(t — k)
k=t
Let
1 N
RY(®) == Ew(@w'(t — 1)
Nt=1
We see that RY(7 + € — k) and the inner sum in (2A.2) differ by at most
max(k, |t + €|) summands, each of which are bounded by C according to (2.58).
Thus
1 N
RIG+e-k) - > Ew(t — Kwi(t —1— )|
t=1
max(k, [t + €)) _C
<C NT =%k +|r+e€) (2A.3)

Let us define

R,(7) = :go ;30 gk)R, (1 + € — k)g™(€) (2A.4)

2.8 Problems 43



Then

R@-R@= 3 2 gRIgOIR.+ ¢~ b
+ 3 3 lglg(OIRu(x + £ = K) = Rix + € = B)

+x 2 Kg®l - 2 ()
N,

ZIO ZIG

Ir + €llg(O)] - Z lg (%)l (2A.5)

The first sum tends to zero as N — « since |R, ()| = C and G (g) is stable. It follows
from the stability of G (g) that

N
L3 kg0, asN->w (2A.6)
k=0

(see Problem 2D.4). Hence the last two sums of (2A.5) tend to zero as N— o,
Consider now the second sum of (2A.5). Select an arbitrary € > 0, and choose
N = N, such that

©

A
.2 kW<

2A.7)
where
= 2 [g(k)|
k=0
This is possible since G is stable. Then select N, such that

 max [Ry(r+€—k) = R’,‘,’(~r+€—k)|<%
lsk<N!

for N > N;. This is possible since
RY(T)—> R, (7), asN—x (2A.8)

(w is quasi-stationary) and since only a finite number of R, (s)’s are involved [no
uniform convergence of (2A.8) is necessary]. Then, for N > N;, we have that the
second sum of (2A.5) is bounded by

Z 2 lg(®)llg (&) - ot 2 Elg(k)llg(f)l 2C + 2 E Ig(k)llg(f)l -2C

which is less than 5¢ accordmg to (2A.7). Hence, also, the second sum of (2A.5)
tends to zero as N — o, and we have proved that the limit of (2A.5) is zero and
hence that s (¢) is quasi-stationary.
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The proof that Es(f)w (¢t — 7) exists is analogous and simpler.
For @, (w) we now find that

©

2@ = 3 (5 3 g®RG+ - HgT@)e™

@

2, Zg0e™ 2 Rulr = &+ e g0

T=—»

=[r-€+k=s]= > g(kye™ - > R.(s)e™™" - igr(f)e“‘"
k=0 €=0

= G(e)Du(0)G'(e™)
Hence (2.77) is proved. The result (2.78) is analogous and simpler.

APPENDIX 2B: PROOF OF THEOREM 2.3

In this appendix we shall show a more general variant of Theorem 2.3, which will be
of value for the convergence analysis of Chapter 8. We also treat the multivariable
case.

Theorem 2B.1. Let {Gy(q), 0 € D} be a uniformly stable family of filters,
and assume that the family of deterministic signals {w,(¢)}, 8 € Dy, t = 1,2,..., is
subject to

wet)l < C,, V6, Vi (2B.1)
Let the signal s4(f) be defined, for each 8 € D,, by
se(t) = Go(q@)v (1) + ws(9) (2B.2)

where {v(f)} is subject to the conditions of Theorem 2.3 [see (2.86) and let
Ee(®e’(t) = A,]. Then

es(uge ”% é: [ss(D)s2(6) — Esq(t)sd (t)]H_’ 0 (2B.3)

w.p. 1, asN—»

Remark. We note that with dim s = 1, D, = {6*} (only one element), Gy(q) = 1,
and wy-(f) = m (), then (2B.3) implies (2.87a). With

s(9) 1 we(0)

Se() = Im()| = [0 v(e) + | we=() (2B.49)
v(f) 1 0

the different cross products in (2B.3) imply all the results (2.87). B

To prove Theorem 2B.1, we first establish two lemmas.
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Lemma 2B.1. Let {v(¢)} obey the conditions of Theorem 2.3 and let
Cu= 2 swplh(®), C.=supEle@l',  C, = suplwy)
=1 1

Then, for all r, N, m, and n,

El g vt — myw'(t —n) — Ev(t — myvT(t— n)]”2 =C-C4{-(N-7 (2B.5)

E

gv(t - mwi(t - n)“2 =C-C}{-C3-(N-7r) (2B.6)

Proof of Lemma 2B.1. With no loss of generality, we may take m = n = 0. We
then have
N

SYE T v - Ev(evT(h) = % kE ﬁj‘,h,(k)a(t,k,é’)hf (€) (@B.7)

t=r
where
a(t,k,l) =e(t — k)e'(t — €) — A, - die (2B.8)
For the square of the i,j entry of the matrix (2B.7), we have

©

SYEHP=22 > f‘, i iv(t,s,kl,kz,el,ez)

t=r s=r k1=0 €;=0 k,=0 £,=0
with
'Y(t,s,klykZ’elan) = hgi) (kl)a(taklyel)[hgj) (el)]Thgi) (kz)a(S,kzyez)[hgj) (ez)]T

Superscript (i) indicates the ith row vector. Since {e(f)} is a sequence of independent
variables, the expectation of vy is zero, unless at least some of the time indexes
involved in a(t,k;,€;) and a(s,k;,€;) coincide, that is, unless

t—ky=s—k, or t—ki=s5—4€, or t—€,=s—k, or t—€{;=s5—%,
For given values of ¢, k1, k,, €1, and ¢, this may happen for at most four values of s.
For these we also have
Ey(t,5,k1,k3,€1,€2) < C, - |h(ky)| - | (k)| - [R (€2)] - |R (€2)]
Hence

E@SYG)y= 2 |hk)|- 2 |h(k)] - 2 h(£)]
k1=0 kz=0 £=0
® N
-2 Jh(&) 2 4-C.=4-C.-Ch(N = 1)
=0 t=r
which proves (2B.5) of the lemma. The proof of (2B.6) is analogous and simpler. W

Corollary to Lemma 2B.1. Let

©

w() = kgoa,(k)e(t -k), v(@)= ég Bu(k)e(t — k)

46 Time-Invariant Linear Systems



Then

Ew(t)v(t)“2 <C-CL-Ct-(N -7

©

= sup e, (), C, =,§0 sup [B,(k)| W

Lemma 2B.2. Let
N

RY = sup | 3 (0530 - Es(isi) (2B.9)
Then
ERY)?=<C(N -7 (2B.10)

Proof of Lemma 2B.2. First note the following fact: If
¢ = ’Eo a(k)z (k) (2B.11)
where {a(k)} is a sequence of deterministic matrices, such that
S kwi=c.

and {z (k)} is a sequence of random vectors such that

El: (P = .
then
Elef = 3 3 ula®Bz()27(0a"(0)]
=3 3 el (Bl 0P (El2@F- @] @B.12

[ ||a(k)||]2 <c,-c

Here the first inequality is Schwarz’s inequality.
We now have

Ri.1) = 3 (5055 - Es0s50)
=> i i 8o(K)v(t —kyw™(t =€) — Ev(t — kyvT(t — )]gl©)

t=r k=0 ¢=0

+ E éo (kv (¢ ~ k)ws () + 2 éo we(t)v (¢ — €)gI(e) (2B.13)
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This gives
sup RNl = 2 2% sup lgs()l - lgo( &) - IS k. )

2C, - 2 sup JgstilIS (k)] (2B.14)
with SY and SY defined by

SY(k,6) = ﬁj: vt —myv'(t —n)— Ev(t — m)v7(t — n)]

87 (k) = ,% v (2 = Kywg(9) + wo()v (2 — k)]
Since Gy(g) is a uniformly stable family of filters,
sup [go(k) | =g k), 2 B(K)=Co <=
Applying (2B.11) and (2B.12) together with Lemma 2B.1 to (2B.14) gives

E[supllR,(N NF=2-C&-4-C,-Ch-(N -7
+2:C4-4-C,-C4-(N-n=C-(N-»
which proves Lemma 2B.2. Wl

We now turn to the proof of Theorem 2B.1. Denote

r(t,0) = so(H)s4(?) — Ese(t)si(?) (2B.15)

and let
RY = sup [[Ry(N7)| (2B.16)
(]
with Re(N,r) defined by (2B.13). According to Lemma 2B.2,
2

B(ert) =(3) e v s
Chebyshev’s inequality (I1.19) gives

P ( 1\1,2 R > ) —15 E(RY?y
Hence

EP( RE > )<c 2—<oo

which, via Borel-Cantelli’s lemma [see (1.18)], implies that

%Rk’ 0, wp.l, askowo (2B.17)
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Now suppose that
su = R"
M=k=< (IIDV +1)2 k
is obtained for k = ky and 8 = 05. Hence

sup % R} =

Nl=k=(N+1)?

kN

klN 121 r(t, BN)’

N2

> r(t,0y)| +

t=1

<L 1‘
N

1 1
=% RN’+k— RY ..

Since ky = N2, the first term on the right side of (2B.18) tends to zero w.p.1 in view
of (2B.17). For the second one we have, using Lemma 2B.2,

<1l
K

which, using Chebyshev’s inequality (1.19) and the Borel-Cantelli lemma as before,
shows that also the second term of (2B.18) tends to zero w.p. 1. Hence

r(t,8) (2B.18)

t=N2+1

-c-[kN—NZ—1]5%,-c-((1v+1)2—1v2-1)5%

E‘k N2+1

sup ¢ R"—> 0, wp.l asN-o>w» (2B.19)
Ms<sk<(N+1)2

which proves the theorem.

Corollary to Theorem 2B.1. Suppose that the conditions of the theorem
hold, but that (2.86) is weakened to

Ele®le(t - 1),...,e(0)1=0, E[eXDle(t - 1),...,e(0)] =\
Ele@'=C

Then the theorem still holds. [That is: {e(f)} need not be white noise; it is
sufficient that it is a martingale difference.]

Proof: Independence was used only in Lemma 2B.1. It is easy to see that this
lemma holds also under the weaker conditions.

APPENDIX 2C: COVARIANCE FORMULAS

For several calculations we need expressions for variances and covariances of signals
in ARMA descriptions. These are basically given by the inverse formulas

R(7) = ——f ®,(w)e dw (2C.1a)
Rol) = f B, (0)e™ do (2C.1b)
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With the expressions according to Theorem 2.2 for the spectra, (2C.1a) takes the
form

_Lﬂceiwzim — — i
R‘(T)_Zw . AJ_l(e‘"’) e“"do = [z = e*]

=L C(z)C(l/z) ie1
2wl A"

for an ARMA process. The last integral is a complex integral around the unit circle,
which could be evaluated using residue calculus. Astrom, Jury, and Agniel, (1970)
(see also Astrém, 1970, Ch. 5) have derived an efficient algorithm for computing
(2C.2) for 7 = 0. It has the following form:

dz (2C.2)

AR)=az"+az" '+ -+ +a,, C@@)=cyz"+ciz" '+ - +¢,

Let a? = a;and ¢! = ¢; and define af, cf recursively by

n—k+1 _n—k+1 n—k+1 _n—-k+1
a""‘—ao ai —Qp—k+18n—k+1-i
i - —
ag k+1
n—k+1 ~k+1 -k+1 n—k+1
C,._k__ao i — Chk+1@n—k+1—i
i - iy
ag k+1

i=0,1,...,n -k, k=1,2,...,n
Then for (2C.2)

RO=13 @

R (2C.3)
An explicit expression for the variance of a second-order ARMA process
y@O +ayt -1 +ayt—2)=e(®)+ce(t—1)+ce(t—2)
Ee* (=1 (2C.4)
is
Var y(¢) =

(1 + az)(l + (C1)2 + (Cz)z) - 201C1(1 + C2) - 2C2(az - (a1)2 + (az)z)

(1 - az)(l -4 + az)(l + ay + az)
To find R,(7) and the cross covariances R,.(7) by hand calculations in simple
examples, the easiest approach is to multiply (2C.4) by e(?), e(t — 1), e(t — 2), y (¥),

y(t — 1), and y(¢t — 2) and take expectation. This gives six equations for the six
variables R,.(7), R,(7), 7 =0, 1, 2. Note that R,.(7) = 0 for T < 0.

(2C.5)
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SIMULATION, PREDICTION,
AND CONTROL

The system descriptions given in Chapter 2 can be used for a variety of design
problems related to the true system. In this chapter we shall discuss some such uses.
The purpose of this is twofold. First, the idea of how to predict future output values
will turn out to be most essential for the development of identification methods.
The expressions provided in Section 3.2 will therefore be instrumental for the
further discussion in this book. Second, by illustrating different uses of system
descriptions, we will provide some insights into what is required for such descrip-
tions to be adequate for their intended uses. A leading idea of our framework for
identification will be that the effort spent in developing a model of a system must be
related to the application it is going to be used for. Throughout the chapter we
assume that the system description is given in the form (2.93):

y(®) = G(qQu(®) + H(qe() G.1)

3.1 SIMULATION
The most basic use of a system description is to simulate the system’s response to

various input scenarios. This simply means that an input sequence u*(y), ¢ = 1,
2,..., N, chosen by the user is applied to (3.1) to compute the undisturbed output

y¥O) = GlQu*®), t=12,...,N (.2)
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This is the output that the system would produce had there been no disturbances,
according to the description (3.1). To evaluate the disturbance influence, a random-
number generator (in the computer) is used to produce a sequence of numbers

e*(), t =1, 2,..., N, that can be considered as a realization of a white-noise
stochastic process with variance \. Then the disturbance is calculated as
v*() = H(g)e"() (3.3)

By suitably presenting y *(f) and v *(#) to the user, an idea of the system’s response
to {u*(¢)} can be formed.

This way of experimenting on the model (3.1) rather than on the actual,
physical process to evaluate its behavior under various conditions has become
widely used in engineering practice of all fields and no doubt reflects the most
common use of mathematical descriptions. To be true, models used in, say, flight
simulators or nuclear power station training simulators are of course far more
complex than (3.1), but they still follow the same general idea (see also Chapter 5).
3.2 PREDICTION

We shall start by discussing how future values of v(¢) can be predicted in case it is
described by

v() = H(Q)e(®) = 2 h(k)e(t — k) (3.4)
k=0
For (3.4) to be meaningful, we assume that H is stable; that is,

S ol <= 6.9)

Invertibility of the Noise Model

A crucial property of (3.4), which we will impose, is that it should be invertible;
that is, if v(s), s < ¢, are known, then we shall be able to compute e(¥) as

e(t) = H(qv () = éoiz(k)v(t — k) (3.6)
with )
Eo (k)| < =

How can we determine the filter H(g) from H(q)? The following lemma gives the
answer.

Lemma 3.1. Consider {v(f)} defined by (3.4) and assume that the filter H is
stable. Let

H(@) = éoh(k)z o (3.7)
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and assume that the function 1/H(z) is analytic in |z| = 1:
1

©

FIoN Ec h(K)z* (3.8)
Define the filter H'(g) by
H(g) = E h(k)q (3.9)

Then H(q) = H Y(q) satisfies (3.6).

Remark. That (3.8) exists for |z| =1 also means that the filter H™'(q) is
stable. For convenience, we shall then say that H(q) is an inversely stable filter.

Proof. From (3.7) and (3.8) it follows that

@ © ® €
1= 2 h(hEz )=k +s=€=3 3 h(k)h(t - k)z ™
k=0 s=0 €=0 k=0

which implies that
if €=0

th(k)ﬁ(e—k)={(1): ey (3.10)

Now let {v(£)} be defined by (3.4) and consider

i h(K)v(t — k)

h(k) 2 h(s)e(t — k — 5)
h(k)h(s)e(t —k —s) = [k + 5 = €]

1M

- kéo
- ego [kéo ﬁ(k)h (€~ k)]e(t ~H=e0

according to (3.10), which proves the lemma. B

Note: The lemma shows that the properties of the filter H(q) are quite anal-
ogous to those of the function H (z). It is not a triviality that the inverse filter H'(q)
can be drived by inverting the function H(z); hence the formulation of the result as
alemma. However, all similar relationships between H(q) and H(z) will also hold,
and from a practical point of view it will be useful to switch freely between the filter
and its 2-transform. See also Problem 3D.1.

The lemma shows that the inverse filter (3.6) in a natural way relates to the
original filter (3.4). In view of its definition, we shall also write

HYg) = ﬁq) (3.11)

for this filter. All that is needed is that the function 1/H(z) be analytic in |z| = 1;
that is, it has no poles on or outside the unit circle. We could also phrase the
condition as H(z) must have no zeros on or outside the unit circle. This ties in very
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nicely with the spectral factorization result (see Section 2.3) according to which, for
rational strictly positive spectra, we can always find a representation H(g) with
these properties.

Example 3.1 A moving average process
Suppose that
v(i)=e(® +ce(t - 1) (3.12)
That is,
H@=1+c¢cq
According to (2.85), this process is a moving average of order 1, MA(1). Then

+
H(z)=1+cz_1=Z ¢

has a pole in z =0 and a zero in z = —c¢, which is inside the unit circle if |c|<1. If so, the
inverse filter is determined as

and e (f) is recovered from (3.12) as

e(f) = i (=ov(t - k) [ |

One-step-ahead Prediction of v

Suppose now that we have observed v(s) for s = — 1 and that we want to
predict the value of v(f) based on these observations. We have, since H is monic,

V(i) = 2 h(K)e(t — k) = e(t) + E h(K)e(t — k) (3.13)

Now, the knowledge of v(s), s = ¢ — 1 implies the knowledge of e(s), s =¢ — 1, in
view of (3.6). The second term of (3.13) is therefore known at time ¢ — 1. Let us
denote it, provisionally, by m(t — 1):

m(t —1)= 2 h(k)e(t — k)
k=1
Suppose that {e(#)} are identically distributed, and let the probability distribution of
e(?) be denoted by f.(x):
P(x =e(®) =x + Ax) = f,(x)Ax

This distribution is independent of the other values of e(s), s # t, since {e(?)} is a
sequence of independent random variables. What we can say about v(z) at time
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t — 1 is consequently that the probability that v(f) assumes a value between
m(t —1) + xand m(¢ — 1) + x + Ax s f,(x) Ax. This could also be phrased as

the (posterior) probability density function of v (¢), given observations up to time ¢ — 1,

isfo(x) =fe(x —m(t - 1)).

Formally, these calculations can be written as
A =Px=v()=x+M)=Px=m(@ -1 +e(f)<x + Ax)
=Px-m(Et-D=el®=x+Ax-m@—1)=f.(x —m(t —1))Ax

Here P(A|v'.") means the conditional probability of the event A, given V3.

This is the most complete statement that can be made about v (f) at time t — 1.
Often we just give one value that charactgrizes this probability distribution and
hence serves as a prediction of v(f). This could be chosen as the value for which the
PDF f.(x — m(t — 1)) has its maximum, the most probable value of v (f), which also
is called the maximum a posteriori (MAP) prediction. We shall, however, mostly
work with the mean value of the distribution in question, the conditional expectation
of v(f) denoted by ¥ (t|r — 1). Since the variable e(¢) has zero mean, we have

Pt — 1) =m@—1) = 2 h(k)e(t — k) (3.14)

It is easy to establish that the conditional expectation also minimizes the mean-
square error of the prediction error:

min E(v(t) — v¥())* > v(5) = d(¢|t — 1)

v(9)
where the minimization is carried out over all functions v (¢) of v'3,!. See Problem
3D.3.

Let us find a more convenient expression for (3.14). We have, using (3.6) and
(3.11),

ol = 1) = [  h0g e = (@ - 12e0v

© 3.15)
H(q) — 1 - ; (
=—2—v()=[1-HYQWv@®) = 2 —h(k)v( -k
H@) 0=l (@ () 2 (kv (& — k)
Applying H(q) to both sides gives the alternative expression
H(g)(e|e — 1) = [H(q) — 1v (1) = 2‘1 h(k)v (e — k) (3.16)
Example 3.2 A moving average process
Consider the process (3.12). Then (3.16) shows that the predictor is calculated as
vt — 1)+t -1t =) =cv(t — 1) (3.17)
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Alternatively we can determine H ~'(q) from Example 3.1 and use (3.15):

et -1 =- i (—o*v(t—k) |

Example 3.3 An autoregressive process

Consider a process

v() = 5‘, a*e(t — k), |a|<1

Then
H(2) = i akz k= 1 —~
k=0 1—az
which gives
H'(2)=1-—az"!
and the predictor, according to (3.15),
vt —1D)=av(t - 1) (3.18)

]
One-step-ahead Prediction of y

Consider the description (3.1), and assume that y(s) and u(s) are known for
s =t — 1. Since

v(s) = y(s) = G(qu(s) (3.19)
this means that also v (s) are known for s = ¢t — 1. We would like to predict the value
y(@® = G(qu@® +v(@®

based on this information. Clearly, the conditional expectation of y(f), given the
information in question, is

ylt — 1) = G(qu() + ¥(t|t - 1)
=G(pu@® +[1-H (9O
=G(qu® +[1 - HY(@Iy® — G(gu®)]
using (3.15) and (3.19), respectively. Collecting the terms gives

ytit—1)=H@G@u®)+[1 -H @]yt (3.20)

or

H(@Qy(tlt — 1) = G@u(®) + [H(@) — 1]y ®) (3.21)
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Remember that these expressions are shorthand notation for expansions. For exam-
ple, let {£(k)} be defined by

G(2) i i}
— = (k)z™* 3.22
HG) 2 (k) (3.22)
[This expansion exists for | z| = 1if H(z) has no zeros and G (z) no polesin |z| = 1.]
Then (3.20) means that

y@lt —1) = éﬁ e(ku(t — k) + él —h(k)y(t — k) (3.23)

Unknown Initial Conditions

In the reasoning so far we have made use of the assumption that the whole
data record from time minus infinity to ¢ — 1 is available. Indeed, in the expression
(3.20) as in (3.23) all these data appear explicitly. In practice, however, it is usually
the case that only data over the interval [0, ¢+ — 1] are known. The simplest thing
would then be to replace the unknown data by zero (say) in (3.23):

Pl - 1) = él eku(t — k) + él —h(k)y (t — k) (3.24)

One should realize that this is now only an approximation of the actual
conditional expectation of y(f), given data over [0, ¢ — 1]. The exact prediction
involves time-varying filter coefficients and can be computed using the Kalman
filter [see (4.91)]. For most practical purposes, (3.24) will, however, give a satis-
factory solution. The reason is that the coefficients {£(k)} and {A(k)} typically decay
exponentially with k (see Problem 3G.1).

The Prediction Error

From (3.20) and (3.1), we find that the prediction error y(f) — y(t|t — 1) is
given by

y(@® =yt — 1) = —HT(@QG(Qut) + H(Qy (1) = e(t) (3.25)

The variable e(f) thus represents that part of the output y(¢) that cannot be pre-
dicted from past data. For this reason it is also called the innovation at time t.

k-step-ahead Prediction of y (*)

Having treated the problem of one-step-ahead prediction in some detail, it is
easy to generalize to the following problem: Suppose that we have observed v (s) for
s < tand that we want to predict the value. v(r + k). We have
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vt + k)= i h(Qe( +k —€) = kilh(@e(t +k -9

+ i h(€e(t + k — ) (3.26)

Let us define
k-1 @
H(g)= 2 h(®)q™, Hlg)= 2 h(£)q""* (3.27)
¢=90 e=k

The second sum of (3.26) is known at time ¢, while the first sum is independent of
what has happened up to time ¢ and has zero mean. The conditional mean of
v(t + k), given v_, is thus given by

bt + k) = ékh(e)e(t +k — €) = Hi(q)e(®) = H(q)- H ' (9)v (1)

This expression is the k-step-ahead predictor of v.
Now suppose that we have measured y., and know «'.*~ ! and would like to
predict y (¢t + k). We have, as before,

y(t +k)=G(Qu(t +k)+v(t+k
which gives
F(t + kly'w, w2 (t + k| = G(@u(r + k) + 9(t + k)
= G(qu(t + k) + H(@)H ' (@v () (3.28)
= G(qu(t + k) + H(@H (9ly(®) — G(qu®)]
Introduce
Wi(q) £ 1 - q A (9)H (9) = [H(q) — ¢ *Hi(9)]H '(9)
= Hi(9)H (q)
Then simple manipulation on (3.28) gives
J(t + K|ty = We(@)G(qu(t + k) + Hi(@)H(@)y (1) (3.30)
or, using the first equality in (3.29),

(3.29)

y(tit — k) = Wu(@G(qu(t) + [1 — Wila)ly @) (3.31)

This expression, together with (3.27) and (3.29), defines the k-step-ahead
predictor for y. Notice that this predictor can also be viewed as a one-step-ahead
predictor associated with the model

y(® = G(@u® + W' (@e(® (3.32)
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The prediction error is obtained from (3.30) as
et +k) 2y + k) —yit+kl)=-W(q)G(Qu(t + k)
+[g* — A@H @b () 3.33)
= Wi(@ly(t + k) = G(qu(t + k)] = Wi(@)H (g)e(t + k)
= Hi(q)e(t + k)
Here we used (3.29) in the second and fourth equalities. According to (3.27), H,(q)

is a polynomial in g~' of order k — 1. Hence the prediction error is a moving
average of e(t + k), ..., e(t + 1).

The Multivariable Case (*)

For a multivariable system description (3.1) (or 2.88), we define the p X p
matrix filter H ~'(g) as

H(q) = 2 h(k)g™
k=0
Here A(k) are the p X p matrices defined by the expansion of the matrix function
[HI ' = 2 h(k)z™* (3.34)
k=0

This expansion can be interpreted entrywise in the matrix [H(z)]™' (formed by
standard manipulations for matrix inversion). It exists for |z| = 1 provided the
function det H(z) has no zeros in |z| = 1. With H ~'(g) thus defined, all calculations
and formulas given previously are valid also for the multivariable case.

3.3 OBSERVERS

In many cases in systems and control theory, one does not work with a full descrip-
tion of the properties of disturbances as in (3.1). Instead a noise-free or “deter-
ministic”’ model is used:

y (@) = G(gu®) (3.35)

In this case one probably keeps in the back of one’s mind, though, that (3.35) is not
really the full story about the input—output properties.

The description (3.35) can of course also be used for “computing,” ‘“guess-
ing,” or “predicting”” future values of the output. The lack of noise model, however,
leaves several possibilities for how this can best be done. The concept of observers is
a key issue for these calculations. This concept is normally discussed in terms of
state-space representations of (3.35) (see Section 4.3); see, for example Luenberger
(1971) or Astrém and Wittenmark (1984). But it can equally well be introduced for
the input—output form (3.35).
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An Example

Let

-1
bz __ (3.36)

G(z)=b El @2t

This means that the input—output relationship can be represented either as

y() =b él (@~ u(t - k) (3.37)
that is
YO =12 4
or as
(1 —ag )y () = bg 'u(
ie.

y(@ —ay(t —1)=bu(t — 1) (3.38)

Now, if we are given the description (3.35) and (3.36) together with data y (s), u(s),
s =t — 1, and are asked to produce a ““guess” or to “calculate” what y (¢) might be,
we could use either

Sl —1)=b 2 (@ 'u(t = k) (3.39)

or
$@tlt — 1) =ay(t — 1)+ bu(t - 1) (3.40)

As long as the data and the system description are correct, there would also be
no difference between (3.39) and (3.40); they are both “observers” (in our setting
“predictors” would be a more appropriate term) for the system. The choice be-
tween them would be carried out by the designer in terms of how vulnerable they
are to imperfections in data and descriptions. For example, if input—output data are
lacking prior to time s = 0, then (3.39) suffers from an error that decays like a'
(effect of wrong initial conditions), whereas (3.40) is still correct for # = 1. On the
other hand, (3.39) is unaffected by measurement errors in the output, whereas such
errors are directly transferred to the prediction in (3.40). From the discussion of
Section 3.2, it should be clear that, if (3.35) is complemented with a noise model as
in (3.1), then the choice of predictor becomes unique (cf. Problem 3E.3). This
follows since the conditional mean of the output, computed according to the as-
sumed noise model, is a uniquely defined quantity.
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A Family of Predictors for (3.35)

The example (3.36) showed that the choice of predictor could be seen as a
trade-off between sensitivity with respect to output measurement errors and rapidly
decaying effects of erroneous initial conditions. To introduce design variables for
this trade-off, choose a filter W(q) such that

Wigp=1+ i weq ¢ (3.41)

Apply it to both sides of (3.35):

W(qy (1) = W(q)G (q)u ()
which means that

y@®O=01-W@ly@® + W@G(gu)

In view of (3.41), the right side of this expression depends only on y(s), s =¢ — k,
and u(s), s = ¢ — 1. Based on that information, we could thus produce a “guess” or
prediction of y (£) as

ylt — k) =[1-W(@ly® + W(g)G(gu() (3.42)

The trade-off considerations for the choice of W would then be:

1. Select W(q) so that both W and WG have rapidly decaying filter coeffi-
cients in order to minimize the influence of erroneous initial conditions.
(3.43)
2. Select W(q) so that measurement imperfections in y (f) are maximally
attenuated.

The later issue can be illuminated in the frequency domain: Suppose that
y () = yu(®) + v(¢), where yy(?) = G(q)u(?) is the useful signal and v (¢) is a mea-
surement error. Then the prediction error according to (3.42) is

e() =y —ytlt — k) = W(gvQ®) (3.44)
The spectrum of this error is, according to Theorem 2.2,
D () = |W(e)[P,(w) (3.45)

where ®, () is the spectrum of v. The problem is thus to select W, subject to (3.41),
such that the error spectrum (3.45) has an acceptable size and suitable shape.

A comparison with the k-step prediction case of Section 3.2 shows that the
expression (3.42) is identical to (3.31) with W(q) = Wi(g). It is clear that the
qualification of a complete noise model in (3.1) allows us to analytically compute
the filter W in accordance with aspect 2. This was indeed what we did in Section 3.2.
However, aspect 1 was neglected there, since we assumed all past data to be
available. Normally, as we pointed out, this aspect is also less important.
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Figure 3.1 The predictor filter.

Fundamental Role of the Predictor Filter

It turns out that for most uses of system descriptions it is the predictor form
(3.20), or as in (3.31) and (3.42), that is more important than the description (3.1) or
(3.35) itself. We use (3.31) and (3.42) to predict, or “guess,” future outputs; we use
it for control design (as we shall see) to regulate the predicted output, and so on.
Now, (3.31) and (3.42) are just linear filters into which sequences {u(®} and {y ()}
are fed, and that produce § (¢t — k) as output. The thoughts that the designer had
when he or she selected this filter are immaterial once it is put to use: The filter is the
same whether W = W, was chosen as a trade-off (3.43) or computed from H as in
(3.27) and (3.29). The noise model H in (3.1) is from this point of view just an alibi
for determining the predictor. This is the viewpoint we are going to adopt. The
predictor filter is the fundamental system description (Figure 3.1). Our rationale for
arriving at the filter is secondary. This also means that the difference between a
“stochastic system” (3.1) and a ‘“‘deterministic” one (3.35) is not fundamental.
Nevertheless, we find it convenient to use the description (3.1) as the basic system
description. It is in a one-to-one correspondence with the one-step-ahead predictor
(3.20) (see Problem 3D.2) and relates more immediately to traditional system
descriptions.

3.4 CONTROL ()

The problem of control is to make the output of a system behave in a desired fashion
by properly selecting the input sequence. It is quite natural that a description of the
system in one form or another will be required in order to adequately design such a
control mechanism. In this section we shall briefly describe how the description
(3.1) can be used for some typical control design problems.

Classical Lead-Lag Compensation

“Classical” control theory as developed by Bode, Nichols, and Nyquist,
among others, in the 1940s is based on some graphical representation of the
frequency function G (e*). A typical approach is to use a feedback law

u(®) = F(@lr@® —yW®] (3.46)

where r (¢) is the desired value of the output: the set point or the reference signal. The
closed-loop system then becomes (neglecting the disturbances)

F(Q)G(9)

y(t) = TTFG)—GT‘I—) r(t) (3.47)
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and the selection of F is made so that the compensated frequency function
F(e*)G(e™)

has the desired properties, which typically are checked in their graphical representa-
tion. For stability of (3.47), the values of the frequency function around certain
frequencies, like the crossover frequency, where

[F(e*)G(e™) = 1

are especially important. It follows that a good knowledge of G(e™) at these
frequencies will be of great importance for successful application of this technique.
See any elementary textbook on control design for a further discussion (e.g., Kuo,
1982).

Minimum Variance Control

The idea behind minimum variance control of (3.1) is to select the input so
that the output has the smallest possible variance around zero mean value. Suppose
that there is a time delay of k time units from the input to the output; that is,

G@=2gg gk)+0 (3.48)

This means that the choice of u(f) will affect y (¢t + k) but no output prior to this.
Now we can write [see (3.33)]

y(t + k) =3t + klt) + et + k)

where e, (t + k) dependsonlyone(t + k), ...,e(¢t + 1). This term cannot therefore
be affected by u(f). Also, e,(t + k) and y(¢ + k|f) are independent, because
{e(t + k) ...e(t + D}are independent of u(s), s < ¢, and y(s), s =< ¢[see also (3.30)
to (3.33)]. Hence

Ey(t +k?=Ey(t + k|’ + Eer(t + k)

Clearly, then, the variance of y (¢ + k) is minimized if we can make y(¢ + kf) = 0.
From (3.29) and (3.31), we see that the regulator

__ H(@H\(9)
¥ =~ @976’ Y

will achieve this. Equation (3.49) consequently defines the minimum variance
regulator. Note that the calculation of (3.49) is essentially the same as the calcu-
lation of the k-step-ahead predictor.

In the special case of k = 1, the preceding expression simplifies to

wty = -Z2=20 (3.50)

We may also remark that these regulators are meaningful only if g“*G (q) is inversely
stable [i.e., if G (2) has no zeros on or outside the unit circle].

(3.49)
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Shaping of the Noise Spectrum

Consider now, for simplicity, the case of one delay in the system [i.e., k = 1in
(3.48)]. Suppose that we would like the output of the system (3.1) to behave like

y{(t) = R(q)e(?) (3.51)

where R is a monic filter.

Clearly, with R(q) = 1 we would obtain minimum variance control. Other R’s
will give a higher output variance, but could still be very well motivated, allowing
for more reasonable trade-offs between control effort and output properties.

It is easy to verify that the regulator

05500

achieves (3.51) when inserted into (3.1). This is thus the sought regulator [in case
G (z) has no zeros on or outside the unit circle].

(3.52)

Synthesis of a Glven Closed-loop System

Consider again the case k = 1, and assume that the control design objective is
that :

y(@® = R(@r(®) + e (3.53)

where r(?) is the reference signal and R(q) is some prespecified desired closed-loop
transfer function. Since y () = y(¢|t — 1) + e(r), we achieve (3.53) if the predicted
value obeys

J(tle = 1) = R(g)r() (3.54)
Try the regulator

u(®) = Fi(q)r() — Faq)y(?) (3.55a)
and insert it into (3.20). This gives

y(tle — 1) = H ()G (9)F(q)r () + [1 - H(q) - H ()G (q@)FAq)]ly (9
We see that the choices

Fi(q) = R—%’% (3.55b)
and
Fyq) = % (3.55¢)

will give the desired behavior (3.54). Note that, for Fi(g) to be causal, R(g) must
have at least one delay. Also, this regulator is realistic only if G (z) has no zeros
outside the unit circle.
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3.5 SUMMARY

Starting from the representation
y(@) = G(qu() + H(gle(?)

we have derived an expression for the one-step-ahead prediction of y(f) [i.e., the
best “guess” of y(¢) given u(s) and y(s), s = ¢ — 1]. This expression is given by

y(tle = 1) = H (@G (Qu(®) + [1 - H )]y (1) (3.56)

We also derived a corresponding k-step-ahead predictor (3.31). We pointed
out that one can arrive at such predictors also through deterministic observer
considerations, not relying on a noise model H. We have stressed that the bottom
line in most uses of a system description is how these predictions actually are
computed; the underlying noise assumptions are merely vehicles for arriving at the
predictors The discussion of Chapters 2 and 3 can thus be viewed as a methodology
for ““guessing” future system outputs.

We have also illustrated some uses of the system descriptions and the predlctor
expressions for control design.

It should be noted that calculations such as (3.56) involved in determining the
predictors and regulators are typically performed with greater computational
efficiency once they are applied to transfer functions G and H with more specific
structures. This will be illustrated in the next chapter.

3.6 BIBLIOGRAPHY

Prediction and control are standard textbook topics. Accounts of the k-step-ahead
predictor and associated control problems can be found in Astrom (1970) and
Astrom and Wittenmark (1984). Prediction is treated in detail in, for example,
Anderson and Moore (1979) and Box and Jenkins (1970). An early account of this
theory is Whittle (1963).

Prediction theory was developed by Kolmogorov (1941a), Wiener (1949),
Kalman (1960), and Kalman and Bucy (1961). The hard part in these problems is
indeed to find a suitable representation of the disturbance. Once we arrive at (3.1)
via spectral factorization, or at its time-varying counterpart via the Riccati equation
[see (4.92) and Problem 4G.3], the calculation of a reasonable predictor is, as
demonstrated here, easy. Note, however (as pointed out in Problem 2E.3), that for
non-Gaussian processes normally only the second-order properties can be ade-
quately described by (3.1), which consequently is too simple a representation to
accommodate more complex noise structures. The calculations carried out in Sec-
tion 3.2 are given in Astrom (1970) for the case where G and H are rational with the
same denominators. Rissanen and Barbosa (1969) have given expressions for the
prediction in input—output models of this kind when the lack of knowledge of the
infinite past is treated properly [i.e., when the ad hoc solution (3.24) is not ac-
cepted]. The result is, of course, a time-varying predictor.
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Calculations of regulators as in (3.48) to (3.55) may look quite similar in the

multivariable case. Structural problems are, however, then quite nontrivial. See
Kucera (1979) and Pernebo (1981) for treatments of such problems.

3.7 PROBLEMS

3G.1.

3G.2.

3E.1.

3E.2.

3E.3.

3EA4.

3T.1.

66

Suppose that the transfer function G (z) is rational and that its poles are all inside
|z| < w, where p < 1. Show that

k)| =c-p
where g (k) is defined as in (2.16).
Let A(g) and B{(g) be two monic stable and inversely stable filters. Show that

51; f.,, |[A(e™) - |B(e™) dw = 1
with equality only if A(q) = 1/B(q).
Let
H(g)=1-11¢g7' + 03¢~

Compute H ~'(g) as an explicit infinite expansion.
Determine the 3-step-ahead predictors for

1
= —
YO =g p=ie()
and
y(@ =1 +cqg e
respectively. What are the variances of the associated prediction errors?

Show that if (3.35) and (3.36) are complemented with the noise model H(q) = 1 then
(3.39) is the natural predictor, whereas the noise model

H@= 3 @9

leads to the predictor (3.40).

Let e(?) have the distribution
1, w.p. 3
e() =4-0.5, w.p.3i
-1.5, w.p.3

Let

v()) = H(q)e ()

and let ¥(¢|t — 1) be defined as in the text. What is the most probable value (MAP) of
v(f) given the information ¥ (¢|t — 1)? What is the probability that v(f) will assume a
value between ¥ (¢)t — 1) — Fand v(¢z|t — 1) + 3?

Suppose that A(g) is inversely stable and monic. Show that A ~'(g) is monic.
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3T.2.

3T.3.

3T.4.

3D.1.

3D.2.

Suppose the measurement error spectrum of v in (3.44) and (3.45) is given by
D, () = MR (")
for some monic stable and inversely stable filter R(q). Find the filter W, subject to
(3.41) with k = 1, that minimizes
EsX(0)
Hint: Use Problem 3G.2.
Consider the system description of Problem 2E.4:
x(t+1)=fx@ +w(@
yO=hx(@®)+v(Q)
(x scalar). Assume that {v (#)} is white Gaussian noise with variance R, and that {w (¢)} is
a sequence of independent variables with
1, w.p. 0.05
w() =4{-1, w.p. 0.05
0, w.p. 0.9

Determine a monic filter W(q) such that the predictor
yO=Q0A-W(Qy®

minimizes
EG® -5y
What can be said about
E@y")?
Consider the noise description
viy=e(®+ce(t—1), |c|>1, Ee}(t)=x 3.57)

Show that e(f) cannot be reconstructed from v* by a causal, stable filter. However,
show that e () can be computed from v}, ; by an anticausal, stable filter. Thus construct
a stable, anticausal predictor for v(f) given v(s),s =t + 1.

Determine a noise 7 (f) with the same second-order properties as v (¢), such that

v{) =e(@® +c*e(t - 1), le* <1,  EeXr) =+ (3.58)

Show that V(1) can be predicted from v*~ ' by a stable, causal predictor. [Measuring
just second-order properties of the noise, we cannot distinguish between (3.57) and
and (3.58). However, when e(7) in (3.57) is a physically well defined quantity (although
not measured by us), we may be interested in which one of (3.57) and (3.58) has
generated the noise. See Benveniste, Goursat, and Ruget (1980).]

In the chapter we have freely multiplied, added, subtracted, and divided by transfer-
function operators G(g) and H(g). Division was formalized and justified by Lemma
3.1 and (3.11). Justify similarly addition and multiplication.

Suppose a one-step-ahead predictor is given as

F(ele = 1) = Li(qu(t — 1) + Laq)y(t — 1)
Calculate the system description (3.1) from which this predictor was derived.
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3D.3. Consider a stochastic process {v (f)} and let
PO =Ev@b
Define
e@=v@O-v0
Let ¥(¢) be an arbitrary function of v~ '. Show that
E(() - ¥())* = E eX()
Hint: Use Ex? = E,E(x%z).
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MODELS OF LINEAR
TIME-INVARIANT SYSTEMS

A model of a system is a description of (some of) its properties, suitable for a certain
purpose. The model need not be a true and accurate description of the system, nor
need the user have to believe so, in order to serve its purpose.

System identification is the subject of constructing or selecting models of
dynamical systems to serve certain purposes. As we noted in Chapter 1, a first step
is to determine a class of models within which the search for the most suitable model
is to be conducted. In this chapter we shall discuss such classes of models for linear
time-invariant systems.

4.1 LINEAR MODELS AND SETS OF LINEAR MODELS

A linear time-invariant model is specified, as we saw in Chapter 2, by the impulse
response { g (k)}7, the spectrum ®,(w) = A\|H (e™)|? of the additive disturbance, and,
possibly, the probability density function (PDF) of the disturbance e (f). A complete
model is thus given by

y(®) = G(qu() + H(q)e()) (4.1)
f.(+), the PDF of e
with

6@= 3 s®a™ H@=1+ 3 h(ka™ (4.2)



A particular model thus corresponds to specification of the three functions G,
H, and f,. It is in most cases impractical to make this specification by enumerating
the infinite sequences {g(k)}, {h(k)} together with the function f,(x). Instead one
chooses to work with structures that permit the specification of G and H in terms of
a finite number of numerical values. Rational transfer functions and finite-
dimensional state-space descriptions are typical examples of this. Also, most often
the PDF f, is not specified as-a function, but described in terms of a few numerical
characteristics, typically the first and second moments:

Ee(p= fxfe(x) dx =0
(4.3)

Ee(t) = fxzfe(x) dx =\

It is also common to assume that e(f) is Gaussian, in which case the PDF is
entirely specified by (4.3). The specification of (4.1) in terms of a finite number of
.numerical values, or coefficients, has another and most important consequence for
the purposes of system identification. Quite often it is not possible to determine
these coefficients a priori from knowledge of the physical mechanisms that govern
the system’s behavior. Instead the determination of all or some of them must be left
to estimation procedures. This means that the coefficients in question enter the
model (4.1) as parameters to be determined. We shall generally denote such
parameters by the vector 6, and thus have a model description

y(®) = G(q.8)u(t) + H(g,0)e() (4.43)
f.(x,8), the PDF of e(t); {e ()} white noise (4.4b)

The parameter vector 6 the ranges over a subset of R?, where d is the dimension of
8:

6 € D, CR? (4.5)

Notice that (4.4) to (4.5) no longer is a model; it is a set of models, and it is for
the estimation procedure to select that member in the set that appears to be most
suitable for the purpose in question. [One may sometimes loosely talk about ‘“‘the
model (4.4),” but this is abuse of notation from a formal point of view.] Using
(3.20), we can compute the one-step-ahead prediction for (4.4). Let it be denoted by
¥ (¢|0) to emphasize its dependence on . We thus have

y(t|6) = H(q.0)G(q.0)u() +[1 —H @0y (4.6)

This predictor form does not depend on f,(x,8). In fact, as we stressed in Section
3.3, we could very well arrive at (4.6) by considerations that are not probabilistic.

70 Models of Linear Time-Invariant Systems



Then the specification (4.4b) does not apply. We shall use the term predictor models
for models that just specify G and H as in (4.4a) or in the form (4.6). Similarly,
probabilistic models will signify descriptions (4.4) that give a complete characteriza-
tion of the probabilistic properties of the system. A parametrized set of models like
(4.6) will be called a model structure and will be denoted by M. The particular model
associated with the parameter value 6 will be denoted by M(8). (A formal definition
is given in Section 4.5.)

In the following three sections, different ways of describing (4.4a) in terms of 6
(i.e., different ways of parametrizing the model set) will be discussed. A formaliza-
tion of the concepts of model sets, parametrizations, model structures, and
uniqueness of parametrization will then be given in Section 4.5, while questions of
identifiability are discussed in Section 4.6.

4.2 A FAMILY OF TRANSFER-FUNCTION MODELS

Perhaps the most immediate way of parametrizing G and H is to represent them as
rational functions and let the parameters be the numerator and denominator coeffi-
cients. In this section we shall describe various ways of carrying out such parametri-
zations. Such model structures are also known as black-box models.

Equation Error Model Structure

Probably the most simple input—output relationship is obtained by describing
it as a linear difference equation:

yO +ay( -1+ +a,y@ —n)
=bu(t —1)+ -+ bu(t —ny) + et 4.7

Since the white-noise term e(#) here enters as a direct error in the difference
equation, the model (4.7) is often called an equation error model (structure). The
adjustable parameters are in this case

06=[a ay...a, by...b,J (4.8)
If we introduce '

Algg=1+ag'+---+a,q ™

and

B(@)=bg'+---+b,g"

np

we see that (4.7) corresponds to (4.4) with

B(g)
G(q,0) = , H(q,0)=
9= 4 i@
Remark. It may seem annoying to use ¢ as an argument of A(q), being a
polynomial in g ~*. The reason for this is, however, simply to be consistent with the

conventional definition of the z-transform; see (2.17). W

(4.9)
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Figure 4.1 The ARX model structure.

We shall also call the model (4.7) an ARX model, where AR refers to
the autoregressive part A(q)y(f) and X to the extra input B(q)u(f) (called the
exogeneous variable in econometrics). In the special case where n, =0, y(?) is
modeled as a finite impulse response (FIR). Such model sets are particularly com-
mon in signal-processing applications.

The signal flow can be depicted as in Figure 4.1. From that picture we see that
"the model (4.7) is perhaps not the most natural one from a physical point of view:
the white noise is assumed to go through the denominator dynamics of the system
before being added to the output. Nevertheless, the equation error model set has a
very important property that makes it a prime choice in many applications: The
predictor defines a linear regression.

Linear Regressions

Let us compute the predictor for (4.7). Inserting (4.9) into (4.6) gives

y(t16) = B(qu(®) + [1 - A(9)ly(® (4.10)

Clearly, this expression could have more easily been derived directly from (4.7). Let
us reiterate the view expressed in Section 3.3: Without a stochastic framework, the
predictor (4.10) is a natural choice if the term e(#) in (4.7) is considered to be
“insignificant” or “difficult to guess.” It is thus perfectly natural to work with the
expression (4.10) also for “deterministic”” models.

Now introduce the vector

o) =[-y@t—1)...—y@t —n)u( -1 ...u(t—n)I" (4.11)
Then (4.10) can be rewritten as
y(116) = 67(t) = ¢"(H8 4.12)

This is the important property of (4.7) that we alluded to previously. The predictor
is a scalar product between a known data vector ¢(f) and the parameter vector 6.
Such a model is called a linear regression in statistics, and the vector ¢(f) is known as
the regression vector. It is of importance since powerful and simple estimation
methods can be applied for the determination of 6.

In case some coefficients of the polynomials A and B are known, we arrive at
linear regressions of the form

72 . Models of Linear Time-Invariant Systems



F(t10) = o796 + p(0) (4.13)
where p.(¢) is a known term. See Problem 4E.1 and also (5.34). The estimation of 6
in linear regressions will be treated in Section 7.3. See also Appendix II.

ARMAX Model Structure

The basic disadvantage with the simple model (4.7) is the lack of adequate
freedom in describing the properties of the disturbance term. We could add flex-
ibility to that by describing the equation error as a moving average of white noise.
This gives the model

y@®O+ay@e-1)+---+a,y(t—n,)
=bu(t -1+ ---+but—n)+e® +cet -1+ - +c,e(t —n) (4.14)
With

Cl@=1+cgt+---+c, g™

it can be rewritten

A(q)y(®) = B(q)u() + C(g)e(n (4.15)
and clearly corresponds to (4.4) with
G(g,0)=2D  fge =@ (4.16)
A(gy A9 '
where now
0=[a...a,bi...b,ci...c.]" (4.17)

In view of the moving average (MA) part C(g)e(?), the model (4.15) will be
called ARMAX. The ARMAX model has become a standard tool in control and
econometrics for both system description and control design. A version with an
enforced integration in the system description is the ARIMA(X) model (I for
integration, with or without the X-variable «), which is useful to describe systems
with slow disturbances; see Box and Jenkins (1970). It is obtained by replacing y (¢)
in (4.15) by Ay (¢) = y(f) — y(¢t — 1) and is further discussed in Section 14.6.

Pseudolinear Regressions

The predictor for (4.15) is obtained by inserting (4.16) into (4.6). This gives

5(le) = 23w + [1- 2],

or

C(9)9(1]6) = B(q)u(® + [C(g) — A@ly () (4.18)
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This means that the prediction is obtained by filtering u and y through a filter with
denominator dynamics determined by C(g). To start it up at time ¢ = 0 requires
knowledge of

7(0[6)...5(-n. +1|6)
y(©0)...y(—n* + 1), n* = max(n, n,)
u)...u(-n, +1)

If these are not available, they can be taken as zero, in which case the prediction
differs from the true one with an error that decays as c-p/, where p is the maximum
magnitude of the zeros of C(z). It is also possible to start the recursion at time
max(n*, n,) and include the unknown initial conditions y(k[0), kK = 1,..., n., in
the vector 0.

The predictor (4.18) can be rewritten in formal analogy with (4.12) as follows.
Adding [1 — C(q)]y(¢]6) to both sides of (4.18) gives

§(tl6) = B(@u() + [1 — A(@ly() +[C(@) — 1y®) - 5¢|6)]  (4.19)
Introduce the prediction error
e(1,0) = y() = 9(t|6)

and the vector

et,0) =[-yt—1...—y(t —nu(t—1)...u(t —n
et — 1,0)...e(t — n,0)]" (4.20)

Then (4.19) can be rewritten as
7(t)6) = ¢7(1,0)0 (4.21)

Notice the similarity with the linear regression (4.12). The equation (4.21) itself is,
however, no linear regression, due to the nonlinear effect of @ in the vector ¢(z, 8).
To stress the kinship to (4.12), we shall call it a pseudolinear regression.

Other Equation-Error-Type Model Structures

Instead of modeling the equation error in (4.7) as a moving average, as we did
in (4.14), it can of course be described as an autoregression. This gives a model set

A@y® = B@u(®) + 0 (4.22)
with
D(@=1+dg '+ - -+d, g™

which, analogously to the previous terminology, could be called ARARX. More
generally, we could use an ARMA description of the equation error, leading to an
“ARARMAX” structure
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Figure 4.2 The equation error model family: The model structure (4.23).

»|-=

A@yO = B@u® + F 3 e .23

which of course contains (4.7), (4.15), and (4.22) as special cases. This would thus
form the family of equation-error-related model sets, and is depicted in Figure 4.2.
The relationship to (4.4) as well as expressions for the predictions are straight-
forward.

Output Error Model Structure

The equation error model structures all correspond to descriptions where the
transfer functions G and H have the polynomial A as a common factor in the
denominators. See Figure 4.2. From a physical point of view it may seem more
natural to parametrize these transfer functions independently.

If we suppose that the relation between input and undisturbed output w can be
written as a linear difference equation, and that the disturbances consist of white
measurement noise, then we obtain the following description:

w) + fiw(t - 1)+ -+ fw(t —ny
=bu(t —1)+ -+ byu(t —ny (4.24a)

y() =w() +e@® (4.24b)
With
Fi@g=1+fig" + -+ fuq™
we can write the model as

y() = %u(t) + e() (4.25)

The signal flow of this model is shown in Figure 4.3.
We call (4.25) an output error (OE) model (structure). The parameter vector
to be determined is

0 =[biby...bufifoe fo] (4.26)
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F Figure 4.3 The output error model

structure.

Since w(f) in (4.24a) is never observed, it should rightly carry an index 6, since it is
constructed from u using (4.24a). That is,

w(t,0) + fiw(t - 1,0) + --- +f,,fw(t - ng,0)
=bu(@ —1)+- -+ bu(t —n) 4.27)

Comparing with (4.4), we find that H(q,0) = 1, which gives the natural predictor

$(tl0) = f;gg u(t) = w(t,0) (4.28)

With the aid of the vector
¢t,0)=[u(t—1)...u(t—n) -w(—-10)...—w( —n;,0)]" (429
this can be rewritten as
y(t]6) = ¢'(t,6)0 (4.30)

which is in formal agreement with the ARMAX-model predictor (4.21). Note that
in (4.29) the w(¢t — 1, 6) are not observed, but, using (4.28), they can be computed:
w(t -k, 0)=y0—k|6),k=1,2,..., n.

Box—Jenkins Model Structure

A natural development of the output error model (4.25) is to further model
the properties of the output error. Describing this as an ARMA model gives

-5 5

u(®) + (4.31)
In a sense, this is the most natural finite-dimensional parametrization, starting from
the descripton (4.4): the transfer functions G and H are independently para-
metrized as rational functions. The model set (4.31) was suggested and treated in
Box and Jenkins (1970). This model also gives us the family of output-error-related
models. See Figure 4.4 and compare with Figure 4.2. According to (4.6), the
predictor for (4.31) is

D(q)B(q)

50) = 2 DE Dy + 2@y (4.32)

C(q)

u(® +

76 Models of Linear Time-Invariant Systems



u
——

Figure 4.4 The BJ-model structure
(4.31).

A General Family of Model Structures

The structures we have discussed in this section actually may give rise to 32
different model sets, depending on which of the five polynomials A, B, C, B, and F
are used. (We have, however, only explicitly displayed six of these possibilities
here.) Several of these model sets belong to the most commonly used ones in
practice, and we have therefore reason to return to them both for explicit algorithms
and for analytic results. For convenience, we shall therefore use a generalized
model structure

AGY ) = F ulh) + 5 o) (4.33)

Sometimes the dynamics from u to y contains a delay of n, samples, so some
leading coefficients of B are zero; that is,

B(q) = b"kq_nk + b"k’rlq_nk T 4 b"k+nb—1q_nk Tmtl= q_""F(‘I), bnk *0
It may then be a good idea to explicitly display this delay by

Ao = 2Bu + £ “.34)

For easier notation we shall, however, here mostly use n, = 1 and (4.33). From
expressions for (4.33) we can always derive the corresponding ones for (4.34) by
replacing u(¢) by u(t — ne + 1).

The structure (4.33) is too general for most practical purposes. One or several
of the five polynomials would be fixed to unity in applications. However, by devel-
oping algorithms and results for (4.33), we also cover all the special cases
corresponding to more realistic model sets.

From (4.6) we know that the predictor for (4.33) is

$(t16) =Pc%zu(t) +[1 —Q(—C%‘@]y(t) (4.35)

The common special cases of (4.33) are summarized in Table 4.1.
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TABLE 4.1 Some Common Black-box SISO Models

as Special Cases of (4.33)
Polynomials Used in (4.33) Name of Model Structure
B FIR (finite impulse response)
AB ARX
ABC ARMAX
AC ARMA
ABD ARARX
ABCD ARARMAX
BF OE (output error)
BFCD BJ (Box-Jenkins)

A Pseudolinear Form for (4.35) (*)

The expression (4.35) can also be written as a recursion:
C(@F(9)y(t16) = F(@LC(q) — D(PA @]y ®) + D(9)B(q)u(®)
From (4.36) we find that the prediction error
e(,0) = y() — 5(|6)

can be written

«40) = | A@y O - F B u0)]

It is convenient to introduce the auxiliary variables

w(t,0) = ng; u(?)

and
v(5,0) = A(q)y (1) — w(t,0)
Then

(0) =y () - 5116) = 23 v (16)

Let us also introduce the “state vector”

‘P(t’o) = [_y(t - 1): Siey ‘}’(t - na),u(t - 1)’ s ’u(t - nb),

-w(t —1,8),...,—w(t — n,0),e(t —1,0),...,e(t — n,0),

—v(t —1,0),...,—v({t — ni,0))
With the parameter vector
0= [al...a,,abl...b,,bfl...f,,fcl...c,,cd,...d,,d]T

(4.36)

(4.37)

(4.38a)

(4.38b)

(4.39)

(4.40)

(4.41)
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and (4.40) we can give a convenient expression for the prediction. To find this, we
proceed as follows: From (4.38) and (4.39) we obtain
w(t,0) = bu(t —1) + -+ + byu(t — ny)
—fiw( —1,0)— - — fuw(t — ng,0) (4.42)
and
e(t,0) = v(t,0) + dw(t — 1,0) + - -+ + d,v(t — ny,0)

—ce(t —1,0) — -+ — ¢, e(t — n,0) (4.43)

Now inserting
v(£,0) =y(@® +ay(t —1) + -+ a,y(t —n) —w(t0)

into (4.43) and substituting w (¢, 6) with the expression (4.42), we find that

e(t,0) =y (1) — 0"9(1,0) (4.44)
Hence
7(t]0) = 67¢(2,6) = ¢7(1,0)60 (4.45)

The two expressions, (4.36) and (4.45) can both be used for the calculation of
the prediction. It should be noticed that the expressions simplify considerably in the
special cases of the general model (4.33) that have been discussed in this section.

Continuous-time Black-box Models (*)

The linear system description could also be parametrized in terms of the
continuous-time transfer function (2.22):

y(® = G(p,0)u() (4.46)

Adjustments to observed, sampled data could then be achieved either by solving the
underlying differential equations or by applying an exact or approximate sampling
procedure (2.24). In addition to obvious counterparts of the structures already
discussed, two specific model sets should be mentioned. The first-order system
model with a time delay

~57¢

G.(s,6) = Eli_-‘-T) y 0 =(K, 1,7 (4.47)

has been much used in process industry applications. Orthonormal function series
expansions
d-1
G.(s,0) = kEOakfk(s), 8= (ay, a1 (4.48)
have been discussed in the early literature, and also more recently by Belanger
(1985). For orthonormal functions, Laguerre polynomials appear to be a good
choice:

4.2 A Family of Transfer-Function Models 79



Vg o)
f k (S) (S + )k +1
a being a time-scaling factor. Clearly, the model (4.46) can then be complemented
with a model for the disturbance effects at the sampling instants as in (2.23).

Multivariable Case: Matrix Fraction Descriptions (*)

Let us now consider the case where the input u(f) is an m-dimensional vector
and the output y(?) is a p-dimensional vector. Most of the ideas that we have
described in this section have straightforward multivariable counterparts. The
simplest case is the generalization of the equation error model set (4.7). We obtain

yO+Ay@E -1+ -+ A,y —n)
=Bwu(t—1)+---+ B,u(t —ny) +e(?) (4.49)

where the A; are p X p matrices and the B; are p X m matrices.
Analogous to (4.9), we may introduce the polynomials

Al@Q=I+Ag ' +---+A,q™"™

4.50
B(@)=Biqg'+ -+ B, g™ (*-30)

These are now matrix polynomials in q ', meaning that A (g) is a matrix whose
entries are polynomials in g ~'. We note that the system is still given by

y(® = G(q,0)u(t) + H(q,0)e(?) (4.51)
with
G(q,0) =A'(9)B(q), H(q,0)=A"(q) (4.52)

The inverse A(q) of the matrix polynomial is interpreted and calculated in a
straightforward way as discussed in connection with (3.34). Clearly, G(q, 8) will be a
p X mmatrix whose entries are rational functions of ¢~ (or ¢). The factorization in
terms of two matrix polynomials is also called a (left) matrix fraction description
(MFD). A thorough treatment of such descriptions is given in Chapter 6 of Kailath
(1980).

We have not yet discussed the parametrization of (4.49) (i.e., which elements
of the matrices should be included in the parameter vector 8). This is a fairly subtle
issue, which will be further discussed in Appendix 4A. An immediate analog of
(4.8) could, however, be noted: Suppose all matrix entries in (4.49) (a total of
n.-p*+ ny-p-m) are included in 6. We may then define the [n,-p + n,-m] X p
matrix

=[A1A;- - - A, B - - - B, (4.53)

and the [n,-p + n,-m]-dimensional column vector
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=y =1) ]
R A (4.54)
| u(t '— n,,)-
to rewrite (4.49) as
y(®) =07Te(t) + e(d) (4.55)

in obvious analogy with the linear regression (4.12). This can be seen as p different
linear regressions, written on top of each other, all with the same regression vector.

When additional structure is imposed on the parametrization, it is normally no
longer possible to use (4.55), since the different output components will not employ
identical regression vectors. Then a d-dimensional column vector # and a p X d
matrix ¢7(f) has to be formed so as to represent (4.49) as

y(®) = ¢7()0 + e(®) (4.56)
See Problems 4G.6 and 4E.12 for some more aspects on (4.55) and (4.56).

In light of the different possibilities for SISO systems, it is easy to visualize a
number of variants for the MIMO case, like the vector difference equation (VDE)

yO)+ Ayt —-1)+---+A,yt—n)=Bu(t —1)+---+ B,u(t —ny)

+e(®)+ Ce(t—1)+ -+ C,e(t —n) (4.57a)
or

G(q,0) = A™(q)B(g9), H(q,0)= A" (9)C(q) (4.57b)

which is the natural extension of the ARMAX model. A multivariable Box-Jenkins
model takes the form

G(q,0) = F(9)B(q), H(g,6) = D"'(9)C(q) (4.58)

and so on. The parametrizations of these MFD-descriptions are discussed in
Appendix 4A.

4.3 STATE-SPACE MODELS

In the state-space form the relationship between the input, noise, and output signals
is written as a system of first-order differential or difference equations using an
auxiliary state vector x (f). This description of linear dynamical systems became an
increasingly dominating approach after Kalman’s (1960) work on prediction and
linear quadratic control. For our purposes it is especially useful in that insights into
physical mechanisms of the system can usually more easily be incorporated into
state-space models than into the models described in Section 4.2.
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Continuous-time Models Based on Physica)l Insight

For most physical systems it is easier to construct models with physical insight
in continuous time than in discrete time, simply because most laws of physics
(Newton’s law of motion, relationships in electrical circuits, etc.) are expressed in
continuous time. This means that modeling normally leads to a representation

£(0) = F(0)x(5) + G(0)u(?) (4.59)

Here F and G are matrices of appropriate dimensions (n X n and n X m, re-
spectively, for an n-dimensional state and an m-dimensional input). The overdot
denotes differentiation with respect to (w.r.t) time t. Moreover,  is a vector of
parameters that typically correspond to unknown values of physical coefficients,
material constants, and the like. The modeling is usually carried out in terms of
state variables x that have physical significance (positions, velocities, etc.), and then
the measured outputs will be known combinations of the states. Let n(f) be the
measurements that would be obtained with ideal, noise-free sensors:

(9 = Hx(?) (4.60)
Using p for the differentiation operator, (4.59) can be written
[pI = F(6)]x() = G(6)u(?)
which means that the transfer operator from u to 7 in (4.60) is
n® = Ge(p, 0)u()
G(p,6) = H[ pl — F(0)I'G(6) (4.61)
We have thus obtained a continuous-time transfer-function model of the system, as
in (2.22), that is parametrized in terms of physical coefficients.
In reality, of course, some noise-corrupted version of m(¢) is obtained, result-
ing from both measurement imperfections and disturbances acting on (4.59). There
are several different possibilities to describe these noise and disturbance effects.

Here we first take the simplest approach. Other cases are discussed in (4.81) and
(4.93) to (4.96), in Problem 4G.7, and in Section 14.5. Let the measurements be

sampled at time instants t = k7, k = 1, 2, - - -, and the disturbance effects at those
time instants be v7(kT). Hence the measured output is
~ y(kT) = Hx(kT) + vr(kT) = G.(p,0)u(?) + vr(kT) (4.62)

Sampling the Transfer Function

As we discussed in Section 2.1, there are several ways of transporting G, (p, 6)
to a representation that is explicitly discrete time. Suppose that the input is constant
over the sampling interval T as in (2.3):

u(® = w, = u(kT), kT=t<((k +1T (4.63)
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Then the differential equation (4.59) can easily be solved from ¢ = kT to ¢ =
kT + T, yielding

x(kT + T) = Ar(0)x(kT) + B(6)u(kT) (4.64)
where

Ar(8) = 0T (4.65a)

B(6)= [ G (0)ds (4.65b)

(See, e.g., Astrom and Wittenmark, 1984.)
Introducing g for the forward shift of T time units, we can rewrite (4.64) as

[qI — Ar(0)]x(KT) = Br(0)u(kT) (4.66)
or
n(kT) = Gr(q, O)u(KT) (4.67)
Gr(q,60) = Hlgl — A7(9)]"'Br(6) (4.68)
Hence (4.62) can equivalently be given in the sampled-data form
y(@® = Gr(q,0u(®) +vr(t), =T 2T, 3T, ... (4.69)

When (4.63) holds, no approximation is involved in this representation. Note,
however, that in view of (4.65) G1(g, 8) could be quite a complicated function of 4.

Example 4.1 DC servomotor

In this example we shall study a physical process, where we have some insight into the
dynamic properties. Consider the dc motor depicted in Figure 4.5 with a block diagram in
Figure 4.6. The input to this system is assumed to be the applied voltage, u, and the output
the angle of the motor shaft, n. The relationship between applied voltage « and the resulting
current i in the rotor circuit is given by the well-known relationship
l(t)

u(f) = Rii(d) + L, + 5(6) (4.70)
where s(?) is the back electromotive force, due to the rotation of the armature circuit in the
magnetic field:

d
$0) =k, 2000
The current i gives a turning torque of

T.H) = K,-i(¥)
on the motor shaft, which is also affected by a torque T¢(f) from the load. Newton’s law then
gives

d? d
J e M) =T -T() - f ar () (4.71)
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Figure 4.5 The dc motor.

where J is the moment of inertia of the rotor plus load and f represents viscous friction.
Assuming that the inductance of the armature circuit can be neglected, L, = 0, the preceding
equations can be summarized in state-space form as

d 0 1 0 0
Zi—tx(t)= 0 —1n x(®) + B u(t) + Y T(9) 4.72)
T T

n() =[1 0]x()
with
n()
x®=|d
ar ()
_ JR. B = k. L, R,
fRo + Kok TR, +kk, ' fRat kak,
Assume now that the torque T is identically zero. To determine the dynamics of the

motor, we now apply a piecewise constant input and sample the output with the sampling
interval T. The state equation (4.72) can then be described by

T

Te
C Figure 4.6 Block diagram of the dc motor.
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x(t + T) = Ar(0)x () + Br(8)u(s) (4.73)

“ls

where

and, according to (4.65),

F — p—T/7
Ar(8) = 1 v(1-e777)
=T/t
0 ¢ (4.74)
-
Bre T =2+ T)
B =
i I

Also assume that y (£), the actual measurement of the angle n(#), is made with a certain error

v(f):
Yy =mn@+v() (4.75)

This error is mainly caused by limited accuracy (e.g., due to the winding of a potentiometer)
and can be described as a sequence of independent random variables with zero mean and
known variance R; (computed from the truncation error in the measurement), provided the
measurements are not too frequent. We thus have a model

y(0) = Gr(q,0)u() +v()

with v (f) being white noise. The natural predictor is thus

J(e18) = Gr(g,0)u(®) =[1 0OllqI — Ar(6)]B+ () (4.76)

This predictor is parametrized using only o parameters B and 7. Notice that if we used our
physical insight to conclude only that the system is of second order we would use, say, a
second-order ARX or OE model containing four adjustable parameters. As we shall see,
using fewer parameters has some positive effects on the estimation procedure: the variance of
the parameter estimates will decrease. The price is, however, not insignificant. The predictor
(4.76) is a far more complicated function of its two parameters than the corresponding ARX
or OE model of its four parameters. M

Equations (4.64) and (4.62) constitute a standard discrete-time state-space
model. For simplicity we henceforth take T = 1 and drop the corresponding index.
We also introduce an arbitrary parametrization of the matrix that relates x to n:
H = C(6). We thus have

x(t+1)=A0)x() + B(Ou(d) (4.77a)
y(©) = CO)x(®) + v(d) (4.77b)
corresponding to
y(®) = G(g,0)u() + v() (4.78)
G(q,0) = C(0)[ql — A(6)]'B(6) (4.79)

4.3 State-Space Models 85



Although sampling a time-continuous description is a natural way to obtain the
model (4.77), it could also for certain applications be posed directly in discrete time,
with the matrices A, B, and C directly parametrized in terms of 6, rather than
indirectly via (4.65).

Noise Representation and the Time-invariant Kalman Filter

In the representation (4.77) and (4.78) we could further model the properties
of the noise term {v(f)}. A straightforward but entirely valid approach would be to
postulate a noise model of the kind

v(f) = H(g,0)e(t) (4.80)

with {e ()} being white noise with variance A. The §-parameters in H(g, 6) could be
partly in common with those in G (g, 0) or be extra additional noise model parame-
ters.

For state-space descriptions, it is, however, more common to split the lumped
noise term v () into contributions from measurement noise v(t) and process noise
w (f) acting on the states, so that (4.77) is written

x(t + 1) = A@)x(t) + B(B)u(t) + w(t)

y(t) = C(a)x(t) + v(t) (4.81)

Here {w(?)} and {v(r)} are assumed to be sequences of independent random vari-
ables with zero mean values and covariances

Ew(wT(t) = R\(0)
Ev())v'(f) = Ry(0) (4.82)
Ew()v'(f) = Ry(0)

The disturbances w(f) and v(f) may often be signals whose physical origins are
known. In Example 4.1 the load variation T;(f) was a “process noise,”” while the
inaccuracy in the potentiometer angular sensor v (¢) was the “measurement noise.”
In such cases it may of course not always be realistic to assume that these signals are
white noises. To arrive at (4.81) and (4.82) will then require extra modeling and
extension of the state vector. See Problem 4G.2.

Let us now turn to the problem of predicting y(¢) in (4.81). This state-space
description is one to which the celebrated Kalman filter applies (see, e.g., An-
derson and Moore, 1979, for a thorough treatment). The conditional expectation of
y(f), given data y (s), u(s),s =t — 1(i.e., from the infinite past up to time ¢ — 1), is,
provided v and w are Gaussian processes, given by

£( +1,0) = A(8)E(1,0) + B(O)u(®) + K(0)y(®) — C(6)2(46)]
7(t|6) = C(6)£(2,0) (4.83)
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Here K(6) is given as
K(6) = [A(8)P(6)CT(8) + Ru(6)][C(6)P(6)CT(8) + Ry(60)]™* (4.84a)

where P(8) is obtained as the positive semidefinite solution of the stationary Riccati
equation:

P(6) = A(6)P(6)AT(6) + Ry(0) ~ [A(6)P(8)CT(6)
+ Ru(0))[C(0)P(0)CT(8) + Ry(6)]7'[A (0)P(6)CT(6) + Rin(6)]” (4.84b)
The predictor filter can thus be written as

y(t1|6) = C(6)lgl — A(8) + K(6)C(6)I"'B(6)u(r)
+C(0)gl — A(6) + K(O)C(OI'K(8)y(r)  (4.85)

The matrix P(8) is the covariance matrix of the state estimate error:
P(60) = Elx(t) — £(1,0)][x () — £(1,0)]" (4.86)
Innovations Representation

The prediction error
y(@) — C(6)£(t,0) = C(O)[x(H) — £(,0)] + v(r) (4.87)

in (4.83) amounts to that part of y (f) that cannot be predicted from past data: “the
innovation.” Denoting this quantity by e(¢) as in (3.25), we find that (4.83) can be
rewritten as

X(t +1,0) = A(0)%(1,0) + B(8)u(t) + K(6)e (f)

y(® = COR(0) + e(t) (4.882)
The covariance of e(¢) can be determined from (4.87) and (4.86):
Ee(e™(f) = A = C(8)P(6)CT(8) + Ry(6) (4.88b)

Since e(#) appears explicitly, this representation is known as the innovations form of
the state-space description. Using the shift operator ¢, we can clearly rearrange it as

y(O) = G(q,0)u(t) + H(g,0)e () (4.8%a)
G(q,0) = C(6)[gl — A(8)]'B(6)
H(q,0) = C(8)[q] — A(0)]'K(8) + 1

(4.89b)

showing its relationship to the general model (4.4) and to a direct modeling of v (¢)
as in (4.80). See also Problem 4G.3.
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Directly Parametrized Innovations Form

In (4.88) the Kalman gain K (8) is computed from A (8), C(8), Ri(8), Rix(6),
and R,(8) in the fairly complicated manner given by (4.84). It is an attractive idea to
sidestep (4.84) and the parametrization of the R -matrices by directly parametrizing
K(6) in terms of 8. This has the important advantage that the predictor (4.85)
becomes a much simpler function of 6. Such a model structure we call a directly
parametrized innovations form.

The R-matrices describing the noise properties contain in(n+1) +np+
ip(p + 1) matrix elements (discounting symmetric ones), while the Kalman gain K
contains np elements (p = dim y, n = dim x). If we have no prior knowledge about
the R-matrices and thus would need many parameters to describe them, it would
therefore be a better alternative to parametrize K (8), also from the point of view of
keeping dim 6 small. On the other hand, physical insight into (4.81) may entail
knowing, for example, that the process noise affects only one state and is indepen-
dent of the measurement noise, which might have a known variance. Then the
parametrization of K () via (4.82) and (4.84) may be done using less parameters
than would be required in a direct parametrization of K (6).

Remark. The parametrization in terms of (4.82) also gives a parametrization
of the p(p + 1)/2 elements of A(6) in (4.88b). A direct parametrization of (4.88)
would involve extra parameters for A, which, however, would not affect the predic-
tor. (Compare also Problems 7E.4 and 8E.2.) W

Directly parametrized innovations forms also contain black-box models that
are in close relationship to those discussed in Section 4.2.

Example 4.2. Companion Form Parametrizations
In (4.88) let

GT = [a1 a, as b1 bz b3 k1 kz k3]

and —a, 10
A@)=|—a: 0 1

—0300

b1 kl
B(B) = bz 5 K(O) = kz
b3 k3

c@=[1 0 0

These matrices are said to be in companion form or in observer canonical form (see, e.g.,
Kailath, 1980). It is easy to verify that with these matrices

big '+ byg i+ big”?
1+aq ' +ag *+ayqg”’

C(0)lg! — A(8)]7'B(6) =
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and
qu_l + kzq -2 + k3q_3
1+ag ' +aq?+aq>

C(6)[qI - A(O)]'K(0) =

so that
1+aq ' +eqg2+cg™?

1+ C(9)[ql — A(8)]'K(8) =
Olal =A@ K(©) = T o

with
c=a+k, i=1,23

With this we have consequently obtained a parametrization of the ARMAX model set (4.15)
and (4.16) forn, = n, =n. =3. W

The corresponding parametrization of a multioutput model is more involved
and is described in Appendix 4A.

Time-varying Predictors (*)

For the predictor filter (4.83) and (4.84) we assumed all previous data from
time minus infinity to be available. If data prior to time ¢ = 0 are lacking, we could
replace them by zero, thus starting the recursion (4.83) at ¢ = 0 with £(0) = 0, and
take the penalty of a suboptimal estimate. This was also our philosophy in Section
3.2

An advantage with the state-space formulation is that a correct treatment of
incomplete information about ¢ <0 can be given at the price of a slightly more
complex predictor. If the information about the history of the system prior to¢ = 0
is given in terms of an initial state estimate x4(6) = £(0,0) and associated uncer-
tainty

Io(6) = E[x(0) — xo(6)](x (0) — xo(6)]" (4.90)

then the Kalman filter tells us that the one-step-ahead prediction is given by, (see,
e.g., Anderson and Moore, 1979),

£(t +1,0) = A(6)2(1,0) + B(O)u(t) + K(1,0)[y(5) — C()£(,0)] (4.91)
J(t|0) = C(0)2(,0),  £(0,6) = x4(6)
K(1,6) = [A(0)P(£,6)CT(8) + Ru(0)[C(0)P(,6)CT(6) + Ry(8)]"  (4.92)
P(t + 1,6) = A(0)P(;,0)A7(6) + Ry(6) — K(1,0)[C(8)P(1,0)CT(6)
+Ry(0)IKT(1,6),  P(0,0) = I,(6)

Now K (z,6) determined by (4.92) converges, under general conditions, fairly rap-
idly to K(6) given by (4.84) (see, e.g., Anderson and Moore, 1979). For many
problems it is thus reasonable to apply the limit form (4.83) with (4.84) directly to
simplify calculations. For short data records, though, the solution (4.90) to (4.92)
gives a useful possibility to deal with the transient properties in a correct way,
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including possibly a parametrization of the unknown initial conditions x,(#) and
I1y(9). Clearly, the steady-state approach (4.83) with (4.84) is a special case of (4.91)
to (4.92), corresponding to xo(8) = 0, [l(8) = P(6).

Sampling Continuous-time Process Noise (*)
Just as for the systems dynamics, we may have more insight into the nature of

the process noise in continuous time. We could then pose a disturbed state-space
model

x(t) = F(0)x () + G(8)u(t) + w(r) (4.93)
where w(?) is formal white noise with covariance function
Ew()w'(s) = Ri(0)d(t — 3) (4.94)

where & is Dirac’s delta function. When the input is piecewise constant as in (4.63),
the corresponding discrete-time state equation becomes

x(kT + T) = Ar(0)x(kT) + B(8)u(kT) + wr(kT) (4.95)

where A, and By are given by (4.65) and wr(kT), k =1, 2, -~ is a sequence of
independent random vectors with zero means and covariance matrix

T
Ew¢(kT)w? (kT) = R, (0) = J ef R, (8)e""®dr (4.96)
o
See Astrom (1970) for a derivation.
State-space Models

In summary, we have found that state-space models provide us with a spec-
trum of modeling possibilities: We may use physical modeling in continuous time
with or without a corresponding time-continuous noise description to obtain struc-
tures with physical parameters 6. We can use physical parametrization of the
dynamics part combined with a black-box parametrization of the noise properties,
such as in the directly parametrized innovations form (4.88), or we can arrive at a
noise model that is also physically parametrized via (4.93) to (4.96). Finally, we can
use black-box state-space structures, such as the one of Example 4.2. These have
the advantage over the input-output black box that the flexibility in choice of
representation can secure better numerical properties of the parametrization
(Problem 16E.1).

4.4 DISTRIBUTED PARAMETER MODELS (*)
Models that involve partial differential equations (PDE), directly or indirectly,
when relating the input signal to the output signal are usually called distributed

parameter models. “‘Distributed” then refers to the state vector, which in general
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belongs to a function space, rather than R". There are basically two ways to deal
with such models. One is to replace the space variable derivative by a difference
expression or to truncate a function series expansion so as to approximate the PDE
by an ordinary differential equation. Then a “lumped” finite-dimensional model, of
the kind we discussed in Section 4.3, is obtained. (“Lumped” refers to the fact that
the distributed states are lumped together into a finite collection.) The other ap-
proach is to stick to the original PDE for the calculations, and only at the final,
numerical, stage introduce approximations to facilitate the computations. It should
be noted that this second approach also remains within the general model structure
(4.4), provided the underlying PDE is linear and time invariant. This is best illus-
trated by an example.

Example 4.3 Heating Dynamics

Consider the physical system schematically depicted in Figure 4.7. It consists of a well-
insulated metal rod, which is heated at one end. The heating effect at time ¢ is the input u(¢),
while the temperature measured at the other end is the output y (¢). This output is sampled at
t=1,2,....

Under ideal conditions, this system is described by the heat-diffusion equation. If
x (1, €) denotes the temperature at time ¢, £ length units from one end of the rod, then

ax (1, &) _ x(t8)

o K £ (4.97)
where k is the coefficient of thermal conductivity. The heating at the far end means that
ax (¢,
ox(.6) =K-u(®) (4.98)
0 le-1
where K is a heat-transfer coefficient. The near end is insulated so that
ax (1, )
=0 4.99
BE | o (4.99)
The measurements are
y@O =x@0) +v(@), t=12,... (4.100)
where {v ()} accounts for the measurement noise. The unknown parameters are
K
0= { K ] (4.101)
4
y(t) ult)

Figure 4.7 The heat-rod system.
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Approximating
Fx(t§) x(E+AL) - 2( ) +x (1§~ AL)
g (ALY ’

E=k-AL

transfers (4.97) to a state-space model of order n = AL/L, where the state variables
x(t, k -AL) are lumped representatives for x(¢, £),k -AL = £ < (k + 1)-AL. This often
gives a reasonable approximation of the heat-diffusion equation.

Here we instead retain the PDE (4.97) by Laplace transforming it. Thus let X (s, £) be
the Laplace transform of x (¢, £) with respect to ¢ for fixed &. Then (4.97) to (4.99) take the
form

X(s,8) = xkX"(s,§)
X'(s,L)=K-U(s) (4.102)
X'(s,0)=0

Prime and double prime here denote differentiation with respect to £, and U(s) is the Laplace
transform of u(¢). Solving (4.102) for fixed s gives

X(s, & = A(s)e " + B(s)e™™

where the constants A (s) and B(s) are determined from the boundary values

X'(s,0)=0
X'(s,L)Y=K-U(s)
which gives
_ _ K-U(s)
A(s)=B() V(e — ¢tV (4.103)
Inserting this into (4.100) gives
Y(s) =X(s, 0) + V(s) = G.(s, 0)U(s) + V(s) (4.104)
G.(s, 0) = 2k (4.105)

M(eL\/ﬂ _ e—L\/s-/:)

where V(s) is the Laplace transform of the noise {v()}. We have thus arrived at a model
parametrization of the kind (4.46). With some sampling procedure and a model for the
measurement noise sequence, it can be carried further to the form (4.4). Note that G. (s, 6) is
an analytic function of s although not rational. All our concepts of poles, zeros, stability, and
so on, can still be applied. W

We can thus include distributed parameter models in our treatment of system
identification methods. There is a substantial literature on this subject. See, for
example, Banks, Crowley, and Kunisch (1983) and Kubrusly (1977). Not sur-
prisingly, computational issues, choice of basis functions, and the like, play an
important role in this literature.
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4.5 MODEL SETS, MODEL STRUCTURES, AND IDENTIFIABILITY:
SOME FORMAL ASPECTS (*)

In this chapter we have dealt with models of linear systems, as well as with para-
metrized sets of such models. When it comes to analysis of identification methods, it
turns out that certain properties will have to be required from these models and
model sets. In this section we shall discuss such formal aspects. To keep notation
simple, we treat explicitly only SISO models.

Some Notation

For the expressions we shall deal with in this section, it is convenient to
introduce some more compact notation. With

I@-G@H@] md x0 - |40 (4.106)

we can rewrite (4.1) as

y() = T(g9x(®) (4.107)
The model structure (4.4) can similarly be written
y(© =T(q,0)x(), T(q,0) =[G(q,6) H(q,0)] (4.108)

Given the model (4.107), we can determine the one-step-ahead predictor (3.56),
which we can rewrite as

y@lt — 1) = W(g)z (o) (4.109)
with
W) = W) W@,  z() = [;‘8] (4.110)
Wiq) = H Y (9)G(g), Wlqg)=[1-H(q)] (4.111)
Clearly, (4.111) defines a one-to-one relationship between T'(¢) and W(q):
T(@<W(g) (4.112)

Remark. Based on (4.107), we may prefer to work with the k-step-ahead
predictor (3.31). To keep the link (4.112), we can view (3.31) as the one-step-ahead
predictor for the model (3.32). B

Models

We noted already in (4.1) that a model of a linear system consists of specified
transfer functions G (z) and H (z), possibly complemented with a specification of the
prediction error variance A, or the PDF f, (x) of the prediction error e. In Sections
3.2 and 3.3, we made the point that what matters in the end is by which expression
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future outputs are predicted. The one-step-ahead predictor based on the model
(4.1) is given by (4.109).

While the predictor (4.109) via (4.112) is in a one-to-one relationship with
(4.107), it is useful to relax the link (4.112) and regard (4.109) as the basic model.
This will, among other things, allow a direct extension to nonlinear and time-
varying models, as shown in Section 5.4. We may thus formally define what we
mean by a model:

Definition 4.1. A predictor model of a linear, time-invariant system is a
stable filter W(q), defining a predictor (4.109) as in (4.110). &

Stability, which was defined in (2.27) [applying to both components of W(q)]
is necessary to make the right side of (4.109) well defined. While predictor models
are meaningful also in a deterministic framework without a stochastic alibi, as
discussed in Section 3.3, it is useful also to consider models that specify properties of
the associated prediction errors (innovations).

Definition 4.2. A complete probabilistic model of a linear, time-invariant
system is a pair (W(g),f.(x)) of a predictor model W(g) and the PDF f,(x) of the
associated prediction errors. B

Clearly, we can also have models where the PDFs are only partially specified (e.g.,
by the variance of e).
In this section we shall henceforth only deal with predictor models and there-
fore drop the adjective. The concepts for probabilistic models are quite analogous.
We shall say that two models Wi(q) and Wi(q) are equal if

Wi(e™) = Wa(e™),  almost all w (4.113)
A model

W(g) = [Wila) W(9)]
will be called a k-step-ahead predictor model if

Wi(q) = iwy“)q'e, with w, (k) # 0 (4.114)
=k .

and an output error model (or a simulation model ) if W,(q) = 0.
Note that the definition requires the predictors to be stable. This does not
necessarily mean that the system dynamics is stable.

Example 4.4 Unstable System
Suppose that

bg™!
1+aq™!

G(q) = , withla|>1
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and

H@ =
This means that the model is described by
y(@) +ay(t —1)=bu(t — 1) +e(t)
and the dynamics from u to y is unstable. The predictor functions are, however:
W(g) = —aq™", Wdq) =bg™'
implying that
Yt -1 =—ay(t — 1) + bu(t — 1)

which clearly satisfies the condition of Definition 4.1. Wl

Model Sets

Definition 4.1 describes one given model of a linear system. The identification
problem is to determine such a model. The search for a suitable model will typically
be conducted over a set of candidate models. Quite naturally, we define a model set
M* as

M* = {W()lex € A} (4.115)

This is just a collection of models, each subject to Definition 4.1, here ‘“‘enumer-
ated” with an index a covering an index set o.
Typical model sets could be

M* = £* = {all linear models}
that is, all models that are subject to Definition 4.1, or

My = {all models such that W,(q) and W,(q)
are polynomials of g ! of degree at
most n} (4.116)

or a finite model set

* = {Wi(q), Wi(q), Wa(q)} (4.117)

We say that two model sets are equal, MT = M5 , if for any W] in M] there exists a W,
in M} such that W, = W; [defined by (4.113)], and vice versa.

Model Structures: Parametrization of Model Sets
Most often a model set of interest is noncountable. Since we have to conduct a

search over it for “the best model,” it is then interesting how the indexation is
chosen. The basic idea is to parametrize (index) the set “smoothly” over a “nice”
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area and perform the search over the parameter set (the index set). To put this
formally, we let the model be indexed by a d-dimensional vector 6:

W(q,0)

To formalize “smoothly,” we require that for any given 2, |z| = 1, the complex-
valued function W(z, @) of 6 be differentiable:

¥(z,0) = W(z 9) (4.118a)
Here

W(2,0) = [Wa(z,0) ¥, (z,6)] = [d Wi(z,0) =Wz, o)] (4.118b)
is ad x 2 matrix. Thus the gradient of the prediction y(¢|6) is given by
d .
Y(,0) = 759 (e]6) = ¥(g,0)z (1) (4.118¢)

Since the filters ¥ will have to be computed and used when the search is carried out,
we also require them to be stable. We thus have the following definition:

Definition 4.3. A model structure M is a differentiable mapping from a
connected, open subset D4 of R? to a model set M*, such that the gradients of the
predictor functions are stable. W

To put this definition in mathematical notation we have
M:Dyd 6> M(0)=W(q,80) € M* (4.119)

such that the filter ¥ in (4.118) exists and is stable for 6 € D, . We will thus use
M(6) to denote the particular model corresponding to 6 and reserve M for the
mapping itself.

Remark. The requirement that D should be open is in order for the deriva-
tives in (4.118) to be unambiguously well defined. When using model structures, we
may sometimes prefer to work with nonopen sets Dy . Clearly, as long as Dy is
contained in an open set where (4.118) are defined, no problems will occur. Differ-
entiability can also be defined over more complicated subsets of R? than open ones,
that is, differentiable manifolds (see, e.g., Boothby, 1975). See the chapter bibli-
ography for further comments. W

Example 4.5 An ARX Structure
Consider the ARX model

y(@) +ay(@ —1)=bu(t — 1) + bu(t —2) +e(t)
The predictor is given by (4.10), which means that

W(g, 6) =[b1qg" +bq™ —aq™'l, 6=[abib]"
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and

q7? 0 [ |

The parametrized model sets that we have explicitly studied in this chapter
have been in terms of (4.4), that is,
y(®) = G(q,0)u(t) + H(q,0)e(2), 0 €Dy (4.120)
or using (4.108)
y(®) = T(q,6)x(2)

It is immediate to verify that, in view of (4.111),

— 1 ’ H(q 70) 0 121
where T’(q, 8) is the d X 2 matrix
, _d _|d d
T(q.0) = & T(q,0) = | £ G(g.0) & H(g.0)] (4.122)

Differentiability of W is thus assured by differentiability of T.
It should be clear that all parametrizations we have considered in this chapter
indeed are model structures in the sense of Definition 4.3. We have, for example:

Lemmad4.1. The parametrization (4.35) together with (4.41) with 8 confined
to Dy = {6|F(2) - C(2) has no zeros on or outside the unit circle} is a model struc-
ture.

Proof. We need only verify that the gradients of

pe e
and
W(z, 0)=1- %

with respect to 6 are analytical in | z| = 1 for § € D, . But this is immediate since,
for example
_B(@)D(2)z”*

[CQFFR) "

9 -
ackm(z’ 0) N
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Lemma 4.2. Consider the state-space parametrization (4.88). Assume that
the entries of the matrices A(6), B(9), K(8), and C(6) are differentiable with
respect to 6. Suppose that 8 € Dy, with

Dy = {6]all eigenvalues of A (6) — K(6)C(8) are inside the unit circle}
Then the parametrization of the corresponding predictor is a model structure.
Proof. See Problem4D.1. R

Notice that when K (6) is obtained as the solution of (4.84), then by a standard
Kalman filter property (see Anderson and Moore, 1979),

Dy = {0|[A(8), R:(8)] stabilizable and [A (6), C(8)] detectable} (4.123)

When relating different model structures, we shall use the following concept.

Definition 4.4. A model structure M, is said to be contained in M, ,
M C M, (4.124)

if Dy, C Dy, and the mapping M, is obtained by restricting M, to 6 € Dy, . The
archetypical situation for (4.124) is when M, defines nth-order models and M,
defines mth-order models, m < n. One could think of M, as obtained from M, by
fixing some parameters (typically to zero). W

The following property of a model structure is sometimes useful:

Definition 4.5. A model structure M is said to have an independently para-
metrized transfer function and noise model if

0=[2} Du=D,xD,, pé€D,, me€D,
(4.125)

T(q,0) =[G(q,p) H(g,m)] W

We note that in the family (4.33) the special cases with A(g) =1 correspond to
independent parametrizations of G and H.

Remark On “Finite Model Structures”: Sometimes the set of candidate
models is finite as in (4.117). It may still be desirable to index it using a parameter
vector 8, now ranging over a finite set of points. Although such a construction does
not qualify as a “‘model structure” according to Definition 4.3, it should be noted
that the estimation procedures of Sections 7.1 to 7.4, as well as the convergence
analysis of Sections 8.1 to 8.5, still make sense in this case. W

Model Set as a Range of a Model Structure
A model structure will clearly define a model set by its range:

M* = R(M) = Range M = {M(6)|0 € Dy}
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An important problem for system identification is to find a model structure whose
range equals a given model set. This may sometimes be an easy problem and
sometimes highly nontrivial.

Example 4.6 Parametrizing M}
Consider the set M} defined by (4.116) with n = 3. If we take

0=[aia;asb,b:b5]", d=6
Dy =R®
and
Wiq, 0) = -aiqg ' ~a:q > ~asq >
Wq, 6) =biqg '+ b,q %+ bsq™?

we have obviously constructed a model structure whose range equals .3 . Wl

A given model set can typically be described as the range of several different model
structures (see Problems 4E.6 and 4E.9).

Model Set as a Union of Ranges of Model Structures

In the preceding example it was possible to describe the desired model set as
the range of a model structure. We shall later encounter model sets for which this is
not possible, at least not with model structures with desired identifiability proper-
ties. The remedy for these problems is to describe the model set as a union of ranges
of different model structures:

[
M= UR,) (4.126)

This idea has been pursued in particular for representing linear multioutput sys-
tems. We shall give the details of this procedure in Appendix 4A. Let us here only
remark that model sets described by (4.126) are useful also for working with models
of different orders, and that they are often used, at least implicitly, when the order
of a suitable model is unknown and is to be determined.

ldentifiabllity Properties

Identifiability is a concept that is central in identification problems. Loosely
speaking, the problem is whether the identification procedure will yield a unique
value of the parameter 6, and/or whether the resulting model is equal to the true
system. We shall deal with the subject in more detail in the analysis chapter (see
Sections 8.2 and 8.3). The issue involves aspects on whether the data set (the
experimental conditions) is informative enough to distinguish between different
models as well as properties of the model structure itself: If the data are informative
enough to distinguish between nonequal models, then the question is whether
different values of 6 can give equal models. With our terminology, the latter prob-
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lem concerns the invertibility of the model structure M (i.e., whether M is injective).
We shall now discuss some concepts related to such invertibility properties. Re-
member that these are only one leg of the identifiability concept. They are to be
complemented in Sections 8.2 and 8.3.

Definition 4.6. A model structure M is globally identifiable at 6* if
M(0) = M(0%), 6€Dy >6=20" (4.127)

Recall that model equality was defined in (4.113), requiring the predictor transfer
functions to coincide. According to (4.112), this means that the underlying transfer
functions G and H coincide. W

Once identifiability at a point is defined, we proceed to properties of the
whole set.

Definition 4.7. A model structure M is strictly globally identifiable if it is
globally identifiable at all 6* ¢ D, . W

This definition is quite demanding. As we shall see, it is difficult to construct
model structures that are strictly globally identifiable. The difficulty for linear
systems, for example, is that global identifiability may be lost at points on hyper-
surfaces corresponding to lower-order systems. Therefore, we introduce a weaker
and more realistic property.

Definition 4.8. A model structure M is globally identifiable if it is globally
identifiable at almost all 6* € Dy. W

Remark. This means that Al is globally identifiable at all 8* € 5M C Dy,
where

is a set of Lebesgue measure zero in R? (recall that D and hence 8D 4 is a subset of
RY). B
For corresponding local properties, the most natural definition of local identi-
fiability of M at 6* would be to require that there exists an € such that
M(0) = M(0*), @ € B(6*,8) =>0=120" (4.128)

where B(0*, £) denotes an e-neighborhood of 6*.
(Strict) local identifiability of a model structure can then be defined anal-
ogously to Definitions 4.7 and 4.8. See also Problem 4G .4.

Use of the Identifiablility Concept

The identifiability concept concerns the unique representation of a given
system description in a model structure. Let
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I y(t) = Go(q)u(t) + Hy(q)e(?) (4.129)

be such a description. We could think of it as a “true” or “ideal” description of the
actual system, but such an interpretation is immaterial for the moment. Let M be a
model structure based on one-step-ahead predictors for

y(t) = G(q,0)u(t) + H(g,0)e(t) (4.130)

Then define the set D1 (¥, M) as those 6-values in D for which ¥ = M(6). We can
write this as

Dr($,M) = {6 € D4y|Go(z) = G(z,8), Hi(z) = H(z,0) almost all z} (4.131)

This set is empty in case & ¢ M. (Here, with abuse of notation, M also denotes the
range of the mapping M.)

Now suppose that & € M so that ¥ = M(8, ) for some value 6,. Furthermore,
suppose that M is globally identifiable at 9,. Then

Dr(%, M) = {60} (4.132)

One aspect of the choice of a good model structure is to select M so that
(4.132) holds for the given description &. Since & is unknown to the user, this will
typically involve tests of several different structures M. The identifiability concepts
will then provide useful guidance in finding an M such that (4.132) holds.

4.6 IDENTIFIABILITY OF SOME MODEL STRUCTURES

Definition 4.6 and (4.113) together imply that a model structure is globally identi-
fiable at 0* if and only if

G(z,0) = G(z,6*) and H (2,0) = H(z,6%)

for almost all z => 6 = 6* (4.133)

For local identifiability, we consider only 6 confined to a sufficiently small neigh-
borhood of 6*. A general approach to test local identifiability is given by the
criterion in Problem 4G .4.

Global identifiability is more difficult to deal with in general terms. In this
section we shall only briefly discuss identifiability of physical parameters and give
some results for general black-box SISO models. Black-box multivariable systems
are dealt with in Appendix 4A.

Parametrizations in Terms of Physical Parameters

Modeling physical processes typically leads to a continuous-time state-space
model (4.59) to (4.60), summarized as (4.62) (T = 1):

y(®) = G.p,0)u@®) + v(r) (4.134)
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For proper handling we should sample G, and include a noise model H so that
(4.133) can be applied for identifiability tests. A simpler test to apply is

G.(s5,0) = G.(s,6*) almost all s > 8 = 6*?7 (4.135)

It is true that this is not identical to (4.133): When sampling G., ambiguities may
oceur; two different G, can give the same Gr [cf. (2.24)]. Equation (4.135) is thus
not sufficient for (4.133) to hold. However, with a carefully selected sampling
interval, this ambiguity should not cause any problems. Also, a #-parametrized
noise model may help in resolving (4.135). This condition is thus not necessary for
(4.133) to hold. However, in most applications the noise characteristics are not so
significant that they indeed bear information about the physical parameters. All this
means that (4.135) is a reasonable test for global identifiability of the corresponding
model structure at 6*.

Now (4.135) is a difficult enough problem. Except for special structures there
are no general techniques available other than brute-force solution of the equations
underlying (4.135). See Problems 4E.5 and 4E.6 for some examples. A comprehen-
sive treatment of (4.135) for state-space models is given by Walter (1982), and
Godfrey (1983) discusses the same problem for compartmental models. See also
Godfrey and Distefano (1985).

SISO Transfer-function Model Structures

We shall now aim at an analysis of the general black-box SISO model structure
(4.33) together with (4.41). Let us first illustrate the character of the analysis with
two simple special cases.

Consider the ARX model structure (4.7) together with (4.9):

B(2)
A(2)’
6= [a1 . .a,,abl. .. bnb]T
Equality for H in (4.133) implies that the A-polynomials coincide, which in turn
implies that the B-polynomials must coincide for the G to be equal. It is thus
immediate to verify that (4.133) holds for all 8* in the model structure (4.136).

Consequently, the structure (4.136) is strictly globally identifiable.
Let us now turn to the OE model structure (4.25) with orders n, and n;. At

0 = 0* we have
B*(z)  biz'+---+bpz™
Fr(z) 1+ftz'+---+frz™™

bikznb—1+...+b'L= nf_nbzan*(z)
¥+ iz e+ 2" F*(2)
We shall work with the polynomial F *(z) = z" F*(z) in the variable z, rather than
with F*(z), which is a polynomial in z~'. The reason is that 2" F*(z) always has

G(z,0) = H(z,0) =

A(2) (4.136)

G(z,0™) =
(4.137)

= """
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degree ny regardless of whether fy is zero. Let B *(z) = z™ B*(2), and let 9 be an
arbitrary parameter value. We can then write (4.133),

G(20%) = G) = F =27~ %%
as
F(2)B*(z) — F*(2)B(z) =0 (4.138)

Since F *(2) is a polynomial of degree ny, it has n; zeros:
Fra)=0, i=1,...,n

Suppose that B *(o;) #0,i =1,...,n;thatis, B *(z) and F *(z) are coprime (have
no common factors). Then (4.138) implies that

ﬁ*(a,’)=0, i=1,...,nf

[if a zero o; has multiplicity »;, then differentiate (4.138) n, — 1 times to conclude
that it js a zero of the same multiplicity to F(z)]. Consequently, we have
F (2) = F *(z), which in turn implies that B(z) = *(z) so that 8 = 6*. If, on the
other hand, F* and B* do have a common factor so that

F*@=v@)F(2), B*(2)=v()B(2)
then all 9, such that
F(2) =B@F(2), B(2) = B(2)BI(2)

for arbitrary B(z) will yield equality in (4.138). Hence the model structure is neither
globally nor locally identifiable at 6* [B(z) can be chosen arbitrarily close to v(z)].
We thus find that the OF structure (4.25) is globally and locally identifiable at 6* if
and only if the corresponding numerator and denominator polynomials z" F*(z) and
z"™ B*(2) are coprime.

The generalization to the black-box SISO structure (4.33) is now straight-
forward:

Theorem 4.1.  Consider the model structure AL corresponding to

B(q) Cl)
—=u(t e(t 4.139
70 O * D ® (4.139)
with 8, given by (4.41), being the coefficients of the polynomials involved. The
degrees of the polynomials are n,, n,, and so on. This model structure is locally and
globally identifiable at * if and only if all of (i) to (iv) hold:

A(qy () =

(i) There is no common factor to all of z™A* (2), z™ B*(z), and z" C*(2).
(ii) There is no common factor to z™ B*(z) and z F*(z).
(iii) There is no common factor to z™ C*(z) and z™ D*(2).
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(iv) If n, = 1, then also require that there is no common factor to z" F*(z) and
z™ D* (2).

The starred polynomials correspond to 6*. H

Notice that several of the conditions (i) to (iv) will be automatically satisfied in
the common special cases of (4.139). For example, when C = F =1 [the case
(4.22)], the model structure is globally identifiable at all 6*. Notice also that any of
the conditions (i) to (iv) can be violated only for “special” 8*, placed on hyper-
surfaces in R%. We thus have the following corollary:

Corollary: The model structure given by (4.139) is globally identifiable.
When the C and F polynomials are constrained to be of zero order, the correspond-
ing model structure is strictly globally identifiable. @

Looking for a “True” System Within Identifiable Structures

We shall now illustrate the usefulness of Theorem 4.1 by applying it to the
problem of finding an M such that (4.132) holds for a given ¥. Suppose that ¥ is
given by

Bi(@) )
@@ 9= LD (4.140)

with orders nJ, nj, and so on (after all possible cancellations of common factors).
This system belongs to the model structure M in (4.139) provided all the model
orders are at least as large as the true ones:

F: Go(g) =

n, = nd, n, = nd, etc. (4.141)

When (4.141) holds, let 6, be a value that gives the description (4.140):

I =M(6) (4.142)
Now, clearly, M will be globally identifiable at 6, and (4.132) will hold if we have
equality in all of (4.141). The true orders nl,..., are, however, typically not

known, and it would be quite laborious to search for all combinations of model
orders until equalities in (4.141) were obtained. The point of Theorem 4.1 is that
such a search is not necessary; the structure M is globally identifiable at 6, under
weaker conditions.

We have the following reformulation of Theorem 4.1:

Theorem 4.2. Consider the system description & in (4.140) with true poly-
nomial orders n2, n}, and so on, as defined in the text. Consider model structure A
of Theorem 4.1. Then & € M and corresponds to a globally identifiable 8-value if
and only if
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(i) min(n, — nd, n, —nj,n. —n2)=0.
(ii) min(n, — n3, n; — nf) = 0.
(iii) min(n, — n2, ny — ng) = 0.
(iv) If n, > 0, then also min(n; — nf,n; —n3) =0. A

With Theorem 4.2, the search for a true system within identifiable model
structures is simplified. If, for example, ¥ can be described in ARMAX form with
finite orders n), nj, and n? , then we may take n, = n, = n. = n(n; = n; = 0)in M,
giving a model structure, say, M, . By increasing # one unit at a time, we will sooner
or later strike a structure where (i) holds and thus & can be uniquely represented.

SISO State-space Models

Consider now a state-space model structure (4.88). It is quite clear that the
matrices A (6), B(6), C(8), and K(8) cannot be ““filled”” with parameters, since the
corresponding input—output description (4.89) is defined by 3n parameters only
(n = dimx). To obtain identifiable structures, it is thus natural to seek parametriza-
tions of the matrices that involve 3n parameters; the coefficients of the two
(n — 1)th order numerator polynomials and the coefficients of the common, monic
nth order denominator polynomial or some transformation of these coefficients.
One such parametrization is the observer canonical form of Example 4.2, which we
can write in symbolic form as

x(t +1,0) = A(8)x(t,8) + B(0)u(r) + K(8)e(r)

y(@®) =C(0)x(,0) + e(® (4.143a)
X X X
A@ =71 La| BO=|T| k®=|" (4.143b)

C(@)=[1 0...0]

Here I, _ isthe (n — 1) X (n — 1) unit matrix, while X marks an adjustable param-
eter. This representation is observable by construction.

According to Example 4.2, this structure is in one-to-one correspondence with
an ARMAX structure with n, = n, = n. = n. From Theorem 4.1 we know that this
is identifiable at 6*, provided the corresponding polynosials do not all have a
common factor, meaning that the model could be represented using a smaller value
of n. It is well known that for state-space models this can only happen if the model is
uncontrollable and/or unobservable. Since (4.143) is observable by construction, we
thus conclude that this structure is globally and locally identifiable at 6* if and only if
the two-input system {A (8*),[B(6*) K(6*)]} is controllable. Note that this result
applies to the particular state-space structure (4.143) only.
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4.7 SUMMARY

In this chapter we have studied sets of predictors of the type

$(t10) = Wi(q,0)u(r) + W(q,0)y(t), 6 € DyCR’ (4.144)
These are in one-to-one correspondence with model descriptions
y() = G(g,0)u(t) + H(g,6)e(t), 6 € Du (4.145)

with {e(¢)} as white noise, via
Wiq,0) = H™'(,6)G (4,0)
w{v(q:o) = [1 - H_l(q’e)]

When choosing models it is usually most convenient to go via (4.145), even if (4.144)
is the “operational” version.

We have denoted parametrized model sets, or model structures by M, while a
particular model corresponding to the parameter value 6 is denoted by M(8). Such a
parametrization is instrumental in conducting a search for “best models.” Two
different philosophies may guide the choice of parametrized model sets:

1. Black-box model structures: The prime idea is to obtain flexible model sets
that can accommodate a variety of systems, without looking into their internal
structures. The input—output model structures of Section 4.2, as well as
canonically parametrized state-space models (see Example 4.2), are of this
character.

2. Model structures with physical parameters: The idea is to incorporate physical
insight into the model set so as to bring the number of adjustable parameters
down to what is actually unknown about the system. Continuous-time
state-space models are typical representatives for this approach.

We have also in this chapter introduced formal requirements on the predictor
filters W,(q,0) and W,(g,0) (Definition 4.3) and discussed concepts of parameter
identifiability (i.e., whether the parameter 6 can be uniquely determined from the
predictor filters). These properties were investigated for the most typical black-box
model structures in Section 4.6 and Appendix 4A. The bottom line of these results
is that identifiability can be secured, provided certain orders are chosen properly.
The number of such orders to be chosen typically equals the number of outputs.

4.8 BIBLIOGRAPHY

The selection of a parametrized set of models is, as we have noted, vital for the
identification problem. This is the link between system identification and parameter
estimation techniques. Most articles and books on system identification thus
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The simple equation error model (4.7) has been widely studied in many
contexts. See, for example, Astrom (1968), Hsia (1977), Mendel (1973), and
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system identification in Astrém and Bohlin (1965) and is since then a basic model.
The ARARX model structure was introduced into the control literature by Clarke
(1967), but was apparently first used in a statistical framework by Cochrane and
Orcutt (1949). The term pseudolinear regression for the representation (4.21) was
introduced by Solo (1978). Output error models are treated, for example, in Dugard
and Landau (1980) and Kabaila (1983). The general family (4.33) was first discussed
in Ljung (1979b). It was used in Ljung and Séderstrém (1983). Multivariable MFDs
are discussed in Kailath (1980) and Dickinson, Kailath, and Morf (1974). Corre-
sponding right MFD:s to (4.56), where the inverses are on the right, are discussed in
Nehorai and Morf (1984). When no input is present, the corresponding model
structures reduce to AR, MA, and ARMA descriptions. These are discussed in
many textbooks on time series (e.g., Box and Jenkins, 1970; Hannan, 1970; and
Brillinger, 1981).

Black-box continuous transfer function models of the type (4.47) have been
used in many cases oriented toward control applications (see, e.g., Webb and
Soderstrom, 1985). Ziegler and Nichols (1942) determine parameters in such mod-
els from step responses and self-oscillatory modes (see Section 6.1). A survey of
continuous-time models and their estimation is given in Young (1981).

State-space models in innovations forms as well as the general forms are
treated in standard textbooks on control (e.g., Astrém and Wittenmark, 1984). The
use of continuous-time representations for estimation using discrete data has been
discussed, for example, in Mehra and Tyler (1973) and Astrém and Kallstrom
(1976). The continuous-time model structure is usually arrived at after an initial
modeling step. See, for example, Wellstead (1979) and Nicholson (1981) for general
modeling techniques and examples. ‘

Distributed parameter models, and their estimation are treated in, for exam-
ple, Banks, Crowley, and Kunisch (1983), Kubrusly (1977), Qureshi, Ng, and
Goodwin (1980), and Polis and Goodson (1976). Example 4.3 is studied experi-
mentally in Leden, Hamza, and Sheirah (1976).

The prediction aspect of models was emphasized in Ljung (1974, 1978a).
Identifiability is discussed in many contexts. A survey is Cgiven in Nguyen and Wood
(1982). Often identifiability is related to convergence of the parameter estimates.
Such definitions are given in Astrom and Bohlin (1965), Staley and Yuc (1970), and
Tse and Anton (1972). Identifiability in terms of the model structure only was
introduced by Bellman and Astrém (1970), who called it “structural identifiability.”
Identifiability definitions in terms of the set Dy (¥, M) [defined by (4.131)] were
given in Gustavsson, Ljung, and Soderstrom (1977). The particular definitions of
the concepts of model structure and identifiability given in Section 4.5 are novel.

A more general model structure concept than Definition 4.3 would be to let
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D, be a differentiable manifold (see, e.g., Byrnes, 1976). However, in our treat-
ment that possibility is captured by letting a model set be described as a union of
(overlapping) ranges of model structures as in (4.126). This manifold structure for
linear systems was first described by Kalman (1974), Hazewinkel and Kalman
(1976), and Clark (1976). See also Byrnes and Hurt (1979).

The identifiability analysis of SISO models in Section 4.6 essentially goes back
to Astréom and Bohlin (1965).

The identifiability of multivariable model structures has been dealt with in
numerous articles. See, for example, Kailath (1980), Luenberger (1967), Glover
and Willems (1974), Rissanen (1974), Ljung and Rissanen (1976), Guidorzi (1981),
Gevers and Wertz (1984), van Overbeek and Ljung (1982), and Correa and Glover
(1984).

4.9 PROBLEMS

4G.1. Consider the predictor (4.18). Show that the effect from an erroneous initial condition
in y(s|6),s =< 0, is bounded by ¢ - p/, where p. is the maximum magnitude of the zeros
of C(2).

4G.2. Colored measurement noise: Suppose that a state-space representation is given as

X(t + 1) = A1(0)x(t) + Bl(G)u(t) + Wl(t)
y(@®) = Ci(0)x(t) + v(2) (4.146)

where {w1()} is white with variance R;(6), but the measurement noise {v(¢)} is not
white. A model for v(¢) can, however, be given as

v(t) = H(q, 8)v(t) (4.147)

with {v(¢)} being white noise with variance R,(f) and H(q,6) monic. Introduce a
state-space representation for (4.147):

& + 1) = Az(0)E(1) + K(6)v()
V(1) = Cx0)E(r) + v(®) (4.148)

Combine (4.146) and (4.147) into a single representation that complies with the
structure (4.81) to (4.82). Determine Ry(8), R12(8), and R»(8). Note that if wy(¢) is zero
then the new representation will be directly in the innovations form (4.88).

4G.3 Verification of the Steady-State Kalman Filter: The state-space model] (4.81) can be
written (suppressing the argument 6 and assuming dim y = 1)

y() = G(qu(t) + vi(t)
where

G(@)=C(@l -A)'B
vi(t) = C(gl = A) ' w(t) + ()

Let Ry, = 0. The spectrum of {v,(r)} then is
®y(w) =C(e” I —A) 'Ri(e ™1 — A)'C"+R,
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4G .4.

4G.5.

using Theorem 2.2. The innovations model (4.88) can be written
y(@) = G(qu() + v2(1)
vo(t) = H(qe(r), H(g)=C(gl -A)"'K +1
The spectrum of {v.(¢)} thus is
®y(w) = NMC(e*” I -~ A) 'K +1][C(e™-I —A) 'K+ 1T

where A is the variance of e (¢).
(a) Show by direct calculation that

q>1((.0) - d)z((x)) =
utilizing the expressions (4.84) and (4.88b). The two representations thus have the

same second-order properties, and if the noises are Gaussian, they are indistin-
guishable in practice (see Problem 2E.3).

(b) Show by direct calculation that
-H'Yq)=1-[1+C(gl —-A)"K]"'=C(q]l - A + KC)'K
and
H™'(@)G(q)=[1+ C(gl - A)'K]'C(gl - A)"'B = C(g] - A + KC)™'B
(c) Note that the predictor (4.83) can be written as (4.85):
y(t16) =C(gl — A + KC)'Bu(t) + C(gl — A + KC) 'Ky (t)

and thus that (a) and (b) together with (3.20) constitute a derivation of the steady-
state Kalman filter.

Consider a model structure M, with predictor function gradient ¥(z, 8) defined in
(4.118). Define the d x d matrix

Iy(6) = f Y(e™, 0)¥7(e ™, 0)dw
(a) Show that M is locally identifiable at 8 if I',(8) is nonsingular.
(b) Let T'(z, 8) be defined by (4.122), and let
[0) = | T'e™, 0)T(e ™, ) do

Use (4.121) to show that I';(8) is nonsingular if and only if T';(8) is. [Note that by
assumption H(g) has no zeros on the unit circle.] I';,(8) can thus be used to test
local identifiability. &

Consider an output error structure with several inputs
Bi(9) Bn(q)
y(t) = wi(t) +---+ Un(t) + e(t)
F(g) F(q)

Show that this structure is globally identifiable at a value 6* if and only if there is no
common factor to all of the m + 1 polynomials

2" F*(2), z"™ Bf (2), i=1...,m
ny = degree F*(2), n, = max degree B} (2)
6* here corresponds to the starred polynomials.
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4G.6. The Kronecker product of an m X n matrix A = (a;) and a p X r matrix B = (by) is

4G.7.

110

defined as (see, e.g., Barnett, 1975)

a11B a12B e al,.B
A®B= asz az.zB...az.,,B
a,.B a.2B ... a..B

This is an mp X nr matrix. Define the operator “col” as the operation to form a
column vector out of a matrix by stacking its columns on top of each other:

Bl
B2
colB=|" |, (rp x 1 vector)
B’
where B’ is the jth column of B.
Consider (4.53) to (4.56). Show that (4.55) can be transformed into (4.56) with

9= col o
o(t) = (),

where I, is the p X p unit matrix. Are other variants of 8 and ¢ also possible?

Consider the continuous-time state-space model (4.93) to (4.94). Assume that the
measurements are made in wideband noise with high variance, idealized as

y() = Hx (1) + »(9
where T (¢) is formal continuous-time white noise with covariance function
Ev(t)v"(s) = R(0)3(t — 5)
Assume that 7(¢) is independent of w(¢). Let the output be defined as

1 [&+vT
y(k + DT) = yir1 == y()dr
T Ji=ir

Show that the sampled-data system can be represented as (4.95) and (4.96) but with
y(kT) = Cr(0)x(kT) + Dr(6)u(kT—-T) + vr(kT)

Cr(6) = 1TH<1>T(0)
Ewr(KTWEKT) = Rux(6) = % fo TR R (0)BT_ (6)HT dr
Eve(kTWE(KT) = Ry(6) = %Taz(o) + % L "Hor_ (0)Ry(6)®L- ()HT dr

T 1 T
(DT(G) = J; em’)'d'r; DT(G) = _‘7‘, J:)Hq>7(0)d7

A derivation is given in Wahlberg (1985).
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4G.8.

4E.1.

4E.2.

4E.3.

4E.4.

Consider the ARX model (4.7). Introduce the 8-operator
3=1—-gq7"

and reparametrize the models in terms of coefficients of powers of 8. Work out the
details of a second-order example. Such a parametrization has the advantage of being
less sensitive to numerical errors when the sampling interval is short (Goodwin, 1985).

Consider the ARX model structure
y@O +ay@t -1+ - ta,y@t —n)=biu(t —1)+---+ b ut —ny,) + et)

where b, is known to be 0.5. Write the corresponding predictor in the linear regression
form (4.13).

Consider the continuous-time model (4.72) of the dc servo with T, (f) = 0. Apply the
Euler approximation (2.25) to obtain an approximate discrete-time transfer function
that is a simpler function of 6.

Consider the small network of tanks in Figure 4.8. Each tank holds 10 volume units of
fluid. Through the pipes A and E flow 1 volume unit per second, through the pipe B, «
units, and through C and D, 1 — a units per second. The concentration of a certain
substance in the fluid is u in pipe A (the input) and y in pipe E (the output). Write down
a structured state-space model for this system. Assume that each tank is perfectly
mixed (i.e., the substance has the same concentration throughout the tank). (Models of
this character are known as compartmental models and are very common in chemical
and biological applications; see Godfrey, 1983.)

B

I — |

Figure 4.8 A network of tanks.

Consider the RLC circuit m Figure 4.9 with ideal voltage source u, (¢) and ideal current
source u;(t). View this cir¢uit as a linear time-invariant system with two inputs

u, (t)]
(@) |

and one output: the voltage y (f). R, L, and C are unknown constants. Discuss several
model set parametrizations that could be feasible for this system and describe their
advantages and disadvantages.

Hint: The basic equations for this circuit are

m@—L—Q+y@+RMﬂ+Mm

u(t) =

y(t) = %J;i('r)d'r
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u, (0 yto

u,(t) Figure 4.9 A simple circuit.

4E.5. A state-space model of ship-steering dynamics can be given as follows:

d V(I) a1 ap 0 V([) b
z r(t) =lQn ax 0 r(t) + b21 u(t)
lro o 1 ollrl Lo

where u(¢) is the rudder angle, v () the sway velocity, () the turning rate, and A (¢) the
heading angle.

(a) Suppose only u(¢) and y(f) = h(t) are measured. Show that the six parameters
a;, by are not identifiable.

(b) Try also to show that if u(¢f) and y (¢) = [; 8] are measured then all six parameters
are globally identifiable at values such that the model is controllable. If you cannot
complete the calculations, indicate how you would approach the problem (refer-
ence: Godfrey and DiStefano, 1985).

4E.6. Consider the model structure (4.88) with
_ - 1] - bl
A(o)_[—az of B® [bz]
Ky
c@@=[1 0], K(@)=
k;

(7] =[a1a2b1b2k1k2]T, 6 €D1CR6

and another structure

am=[y 0 Bw=|"]

cmy =l vl Km= [2]

m=[Mpipevivekikz]’, m€D,CR®

Determine D, and D> so that the two model structures determine the same model set.
What about identifiability properties?

4E.7. Consider the heated metal rod of Example 4.3. Introduce a five-state lumped approx-
imation and write down the state-space model explicitly.
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4E.8.

4E.9.

4E.10.

4E.11.

Consider the OE model structure with n, = 2, n; = 1, and b, fixed to unity:

-1

+byq?

vy ="y re(f)  0=[bfT
1+ flq

Determine I';(8) of Problem 4G.4 explicitly. When is it singular?

Consider the model structures

Mo y@) = —ay(t — 1) +bu(t — 1)
o=[2], Du=tai=1b>0
and
Moz y(®) = —(cosa)y(t — 1) +ePu(t —1)
o
TI = B b
Show that R(M, ) = R(M:). Discuss possible advantages and disadvantages with the
two structures.
Consider the dc-motor model (4.72). Assume that the torque T; can be seen as a
white-noise zero mean disturbance with variance o’ (i.e., the variations in 7; are
random and fast compared to the dynamics of the motor). Apply (4.94) to (4.96) to
determine R,(6) and R1»(#) in a sampled model (4.81) and (4.82) of the motor, with
A (#) and B(9) given by (4.74) and

T
6=|Bl, v=v"'o
v

As an alternative, we could use a directly parametrized innovations form (4.88) with
A(0) and B(9) again given by (4.74), but

Du,={0=a=mn-o<p<x}

K(6) = [::] and 6=1[1 B ki kz]”

Discuss the advantages and disadvantages of these two parametrizations.
Consider the system description

x(t +1)=ax(t) + bu(t) + &)
y(@) =x() + (5
where e(¢) is white Gaussian noise and £(¢) has the distribution
£1) =0, w.p.1 -1\

&) = +1, w.p.

N[> N>

& = -1, w.p.

The coefficients a, b, and \ are adjustable parameters. Can this description be cast
into the form (4.4)? If so, at the expense of what approximations?
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4E.12. Consider a multivariable ARX model set

4T.1.
4T.2.
4T.3.

4D.1.
48.1.

114

y(@) + Ayt —1)+ Ayt —2)=Biu(t — 1) + e(®)

where dimy = p =2, dimu = m = 1, and where the matrices are parametrized as

O A A S

where a and B are known values and X indicates a parameter to be estimated. Write
the predictor in the form
§(116) = @"(16 + p(t)
with p(¢) as a known term and give explicit expressions for ¢ and 8. Can this predictor
be written in the form (4.55)?
Determine the &k -step-ahead predictor for the ARMAX model (4.15).
Give an expression for the k-step-ahead predictor for (4.88).

Suppose that W,.(g) and W,(q) are given functions, known to be determined as k-step-
ahead predictors for the system description

y() = G(qu () + H(gle ()
Can G(e*) and H(e™) be uniquely computed from W,(e*) and W,(e™)? What if G
and H are known to be of the ARMAX structure

B(q) C(q)
G@=—~ H@@=——
A(g) Alg)
where A, B, and C have known (and suitable) orders?
Prove Lemma 4.2.

In many of the S-problems aiming at a software package, we shall work with the
general /O-model family (4.34). Select the general family or your favorite subsets of it
(see Table 4.1) for these problems and decide on a matrix structure

TH

to contain the polynomials orders na, nb, nc, nd, and nf and the delay nk, as well as the
parameter values a;, b;, and so on, and the variance \ of the innovations. The variable
TH thus uniquely determines a particular model. Reserve space for a covariance matrix
of dimension d X d to be included in TH later. Write a MACRO

PRESENT(TH)
for presenting the model on the screen in user-friendly format, Aiso write a MACRO
[G,PHIV] = TRF(TH)
that computes the transfer function
B(e™)

O = ARy

= W1y. .., N

and the noise spectrum
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C ( e iw )
A(eim)D(eiw)
and returns them as vectors to be used with the BODEPLOT command.
4S.2, Write a MACRO

PHIV(w) = A

N W=W...0N

y = SIMU(u, ¢, TH)
that simulates (4.34) and a MACRO
e = PE(y, u, TH)

that computes the prediction errors (4.37). Here and henceforth, u, e, and y are the
vectors u’, ', and y”, [For future use it is a good idea to let PE also return the sequences
(vectors) w and v in (4.38).]

APPENDIX 4A: IDENTIFIABILITY OF BLACK-BOX MULTIVARIABLE
MODEL STRUCTURES

The topic of multivariable model structures and canonical forms for multivariable
systems is often regarded as difficult, and there is an extensive literature in the field.
We shall here give a no-frills account of the problem, and the reader is referred to
the literature for more insights and deeper results. See the bibliography.

The issue still is whether (4.133) holds at a given 6. Our development parallels
the one in Section 4.6. We start by discussing polynomial parametrizations or
MFDs, such as (4.52) to (4.58), and then turn to state-space models. Throughout
the section, p denotes the number of outputs and m the number of inputs.

Matrix Fraction Descriptions (MFD)

Consider first the simple multivariable ARX structure (4.49) or (4.53). This
uses

5 G(z,0) = A(2)B(z), H(z,0) = AY(2) (4A.1)

with 6 comprising all the coefficients of the matrix polynomials (in 1/z) A (z) and
B(z). These could be of arbitrary orders. Just as for the SISO case (4.136), it is
immediate to verify that (4.133) holds for all 8*. Hence the model structure given by
the MFD (4A.1) is strictly globally identifiable.

Let us now turn to the output error model structure

G(z,0) = FY(2)B(z), H(z,0) =1 (4A.2)

It should be noted that the analysis of (4A.2) contains also the analysis of the
multivariable ARMAX structure and multivariable Box—Jenkins models. See the
corollary to Theorem 4A.1, which follows.

The matrix polynomial F(z) is here a p X p matrix
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F11(Z) Flz(Z) e Flp(Z)
F(z) = le:(z) F22-(Z) oo FZp'(Z) =FO 4 FO -1 4 ... 4 FO ;v (4A.3)

F(2) FPJ(z) . FJ(z)

whose entries are polynomials in z 7"

E@) = + fP27 + o4 £ 27 (4A.4)

The degree of the F; polynomial will thus be denoted by v; and v = maxwv;. Simi-
larly, B(z) is a p X m matrix polynomial. Let the degrees of its entries be denoted
by wy -

The structure issue is really to select the orders v; and u; [i.e., p(p + m)
integers]. This will give a staggering amount of possible model structures. Some
special cases discussed in the literature are

1. Vi = N, Py =r (4A.5)
2. Vi = O,l + ], Vi =i, Py =T (4A6)
3. vy = n;, all i,' i =7, alli (4A.7)

In all these cases we fix the leading matrix to be a unit matrix:
F(O) = I, i.e.,fgp) = 8,‘,‘ (4A.8)

The form (4A.5) is called the “full polynomial form” in Soderstrém and Stoica
(1983). Tt clearly is a special case of (4A.7). It is used and discussed in Hannan
(1969, 1976), Kashyap and Rao (1976), Jakeman and Young (1979), and elsewhere.

The form (4A.6) gives a diagonal F-matrix and has been used, for example, in
Kashyap and Nasburg (1974), Sinha and Caines (1977), and Gauthier and Landau
(1978).

The structure (4A.7) where the different columns are given different orders is
discussed, for example, in Guidorzi (1975), Gauthier and Landau (1978), and
Gevers and Wertz (1984).

Remark. In the literature, especially the one discussing canonical forms
rather than identification applications, often the polynomials

F(z)=2"F(z) = F9z" + FUz* "'+ ... + F¥ (4A.9)

in the variable z are considered instead of F(z) (just as we did the SISO case).
Canonical representations of F(z) [such as the “Hermite form”; see Dickinson,
Kailath, and Morf, 1974; Hannan, 1971a; or Kailath, 1980] will then typically
involve singular matrices F®. Such representations are not suitable for our
purposes since y (f) cannot be solved for explicitly in terms of past data. W

The identifiability properties of the diagonal form (4A.6) can be analyzed by
SISO arguments. For the others we need some theory for matrix polynomials.
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Some Terminology for Matrix Polynomiais

Kailath (1980), Chapter 6, gives a detailed account of various concepts and
properties of matrix polynomials. We shall here need just a few:

A p X p matrix polynomial P(x) is said to be unimodular if detP(x) =
constant. Then P~'(x) is also a matrix polynomial. Two polynomials P(x) and Q (x)
with the same number of rows have a common left divisor if there exists a matrix
polynomial L (x) such that

P(x) = L(x)P(x)
Q(x) = L®)O(x)

for some matrix polynomials P(x) and Q (x).

P(x) and Q(x) are said to be left coprime if all common left divisors are
unimodular. This is a direct extension of the corresponding concept for scalar
polynomials. A basic theorem says that if P(x) and Q (x) are left coprime then there
exist matrix polynomials A (x) and B (x) such that

P(x)A(x) + Q(x)B(x) =I (identity matrix) (4A.10)
Loss of identifiabllity in Multivariable MFD Structures
We can now state the basic identifiability result.

Theorem4A.1.  Consider the output error MFD model structure (4A.2) with
the polynomial degrees chosen according to the scheme (4A.7). Let 6 comprise all
the coefficients in the resulting matrix polynomials, and let F. (z) and B+ (z) be the
polynomials in 1/z that correspond to the value 6*. Let

D,(z) = diag(z™,...,z")
D, (z) = diag(z",...,z™)

be diagonal matrices, with n; and 7, defined in (4A.7), and define F #(2) =
Fi(2)D,(2), B+(2) = B« (2)Dyn(2) as polynomials in z. Then the model structure in
question is globally and locally identifiable at 8* if and only if

F «(z) and B «(2) are left coprime (4A.11)
Proof. Let 6 correspond to F(z) and B(z), and assume that
G(z,0) = G(z, 6*) = FY(2)B(2) = Fx' (2)B +(2)
This can also be written as )
D,()F (2)B(2)D;!(2) = D, ()F +'(2)B x(2)D; (2)
where F and B are defined analogously to Fsand B.. This gives
B.(2) = Fu(2)F'(2)B(2) (4A.12)
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When B+ and F. are left coprime there exist, according to (4A.10), matrix poly-
nomials X (z) and Y (z) such that

Fe(@X (@) + Bo()Y(2) = 1

Inserting (4A.12) gives

F.@F QIF(X(2) + B()Y(2)] =
or

F(2)X(2) + B(2)Y(2) = F(2)F:'(z) 2 U(2)
Since the left side is a matrix polynomial in z, so is U(z). We have

F(2) = U(2)F«(2) (4A.13)
Note that, by (4A.8),
I=1limF(z) = lim F@)D;'(2) = lim Fu(2)D;'(2)
Hence, multiplying (4A.13) by D, (z) gives
[ =1imU(2)

which since U(z) is a polynomial in z, shows that U(z) = 1, and hence F(z) = F«(2),
which in turn implies that B(z) = B« (z), and the if-part of the theorem has been
proved. If (4A.11) does not hold, a common, nonunimodular, left factor Ux (z) can
be pulled out from Fx (z) and B« (z) and be replaced by an arbitrary matrix with the
same orders as Usx (z) [subject to the constraint (4A.8)]. This proves the only-if-part
of the theorem. W

The theorem can immediately be extended to a model structure

G(z,0) = F'(z)B(2), H(z,0) =D (2)C(2) (4A.14)

with F and D subject to the degree structure (4A.7). It can also be extended to the
multivariable ARMAX structure:

G(z,0) = A" (2)B(z), H(z0) = A"(2)C(2) (4A.15)

Corollary 4A.1. Consider the ARMAX model structure (4A.15) with the
degrees of the polynomial A(z) subject to (4A.7). Let A +(z) and B*(z) =
[B «(2) C*(z)] a p X (m + p) matrix polynomial, be the polynomials that corre-
spond to 8*, as described in the theorem. Then the structure is identifiable at 6* if
and only if

A «(2) and ﬁ*(z) are left coprime M

The usefulness of these identifiability results lies in the fact that only p orders
(the column degrees) have to be chosen with care to find a suitable identifiable
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structure, despite the fact that p -m [or even p - (m + p) in the ARMAX case]
different transfer functions are involved.

State-space Model Structures

For a multivariable state-space model (4.143a), we introduce a parametric
structure, analogous to (4.143b):

010000000 X X

001000000 X X

XX X X X X X X X X X

000010000 X X
AB)= | XX X X X X X X X|, B@)=|x X

000000100 X X

000000010 X X

000000O0O0T1 X %

LX X X X X X X X X LX X

X X X7

X X X

X X X

X X X 100000O0OO0TO
K@)=| x xx [, C(8)=(0 001 000 00O (4A.16)

X X X 0000O0O1O0O00

X X X

X X X

X X X _]

The number of rows with X’s in A () equals the number of outputs. We have thus
illustrated the structure for n =9, p = 3, m = 2. In words, the general structure
can be defined as:

Let A (6) initially be a matrix filled with zeros and with ones along the superdiagonal.

Let then row numbers r;,r,,...,r,, where r, = n, be filled with parameters. Take
ro =0 and let C(@) be filled with zeros, and then let row i have a one in column
ri—1 t+ 1. Let B(6) and K(9) be filled with parameters. 4A.17)

The parametrization is uniquely characterized by the p numbers r, that are to
be chosen by the user. We shall also use

Vi =r —ri_
and call
Vo ={vi,...,v} (4A.18)
the multiindex associated with (4A.17). Clearly,

Appendix 4A: | dentifiability of Black-Box Multivariable Model Structures 119



P
n=2> (4A.19)
i=1

By a multiindex v, we henceforth understand a collection of p numbers v; =1
subject to (4A.19). For given n and p, there exist () different multi-indexes. Notice
that the structure (4A.17) contains 2np + mn parameters regardless of v, .

The key property of a “canonical” parametrization like (4A.16) is that the
corresponding state vector x (¢, ) can be interpreted in a pure input-output con-
text. This can be seen as follows. Fix time ¢, and assume that u(s) = e(s) = 0 for
s = t. Denote the corresponding outputs that are generated by the model fors = ¢
by ys(s|t — 1). We could think of them as projected outputs for future times s as
calculated at time ¢ — 1. The state-space equations give directly

Jolt|t = 1) = C(O)x(t, 6)
ot + 1]t — 1) = C(B)A(8)x (1, 6)

: (4A.20)
Pt +n — 1t —1) = C(O)A""(6)x(1, 6)
With
C(9)
0,(0) = | C(OA0) (4A.21)
C(6)A"~1(8)
(the np X n observability matrix) and
Jo(t|t = 1)
Yi(r) =
Yot +n—1|t —1)
We can write (4A.20) as
Yi(t) =0,(0)x(t,0) (4A.22)

It is straightforward to verify that (4A.17) has a fundamental property: The np X n
observability matrix 0,(6) will have n rows that together constitute the unit matrix,
regardless of §. The reader is invited to verify that row number kp + i of G, will be

[00...010...0]

with 1 in positionz;_; + k + 1. This holds for 1 =i =< p, 0 < k <wv;. Thus (4A.22)
implies that the state variables corresponding to the structure (4A.17) are

X, +x+1(t, ) =90 + ke —=1), i=1,...,p 0=k <y (4A.23)

Here superscript (i) denotes the ith component of y. This interpretation of state
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variables as predictors is discussed in detail in Akaike (1974b) and Rissanen (1974).
By the relation (4A.23), n rows are picked out from the np vector ¥? (r)in (4A.22).
The indexes of these rows are uniquely determined by the multiindex v,. Let them
be denoted by

L={k-1p+i; 1sk=w; 1=i=p} (4A.24)

The key relationship is (4A.23). It shows that the state variables depend only on the
input—output properties of the associated model.

Consider now two values 6* and 6 that give the same input-output properties
of (4A.17). Then ji(t + k|t — 1) = J(t + k|t — 1), since these are computed from
input-output properties only. Thus x(z, ) = x(t, 6*). Now, if 8* corresponds to a
minimal realization, so must 8, and Theorem 6.2.4 of Kailath (1980) gives that there
exists an invertible matrix 7 such that

*) — -1 *y —
A(0*)=TA(9)T!, B(0*) = TB(6) (4A.25)
K(6*) = TK(#9), C(6*)=C(0)T!
corresponding to the change of basis
x(t, 0%) = Tx(t, 6) (4A.26)

But (4A.26) together with our earlier observation that x (7, 0*) = x(t, 6) shows that
T = I, and hence that 8* = 4.
We have now proved the major part of the following theorem:

Theorem 4A.2. Consider the state-space model structure (4A.17).
This structure is globally and locally identifiable at 6* if and only if
{A(6*),[B(6*) K(6*)]} is controllable.

Proof. The if-part was proved previously. To show the only-if-part, we find
that if 6* does not give a controllable system then its input—output properties can
be described by a lower-dimensional model with an additional, arbitrary, non-
controllable model. This can be accomplished by infinitely many different 6’s. W

It follows from the theorem that the parametrization (4A.17) is globally
identifiable, and as such is a good candidate to describe systems of order n. What is
not clear yet is whether any nth-order linear system can be represented in the form
(4A.17) for an arbitrary choice of multiindex 7,. That is the question we now turn
to.

Hankel-Matrix Interpretation
Consider a multivariable system description

y(®) = Go(@)u(?) + Ho(g)e(?) = Ti(g)x(?) (4A.27)
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with
_ —u@®
To(q) = [Go(q) Hi(p)],  x(t) ‘[Z(z)]

Assume that Ty(q) has full row rank [i.e., LT(q) is not identically zero for any
nonzero 1 X p vector L]. Let

I(p=1[0 11+ inq"‘ (4A.28)

be the impulse response of the system. The matrices H, are here p X (p + m).
Define the matrix

H H, ... H,
H2H3 .o HS+1

%r,s = H:; H4 e .Iis+2 (4A.29)
HIHI+1 R Hr+s—1

This structure with the same block elements along antidiagonals is known as a block
Hankel matrix. Consider the semifinite matrix ¥, = %, ... For this matrix we have
the following two fundamental results.

Lemma 4A.1. Suppose that the n rows I; [see (4A.24)] of ¥, span all the
rows of #,.,. Then the system (4A.27) can be represented in the state-space form
(4A.17) corresponding to the multiindex v,. W

The proof consists of an explicit construction and is given at the end of this appen-
dix.

Lemma 4A.2. Suppose that
rank ¥, <n (4A.30)
Then there exists a multiindex v, such that the n rows I, span ¥, ,,. The proof of this

lemma is also given at the end of this appendix. W

It follows from the two lemmas that (4A.30) is a sufficient condition for
(4A.27) to be an n-dimensional linear system (i.e., to admit a state-space
representation of order n). It is, however, well known that this is also a necessary
condition. (¥ is obtained as the product of the observability and controllability
matrices.) We thus conclude:

Any linear system that can be represented in state-space form of order n can also be
represented in the particular form (4A.17) for some multiindex v, . (4A.31)

When (4A.30) holds, we thus find that the np rows of ¥, span an n-
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dimensional (or less) linear space. The generic situation is then that the same space
is spanned by any subset of n rows of ¥, . (By this term we mean if we randomly pick
from a uniform distribution np row vectors to span an n-dimensional space the
probability is 1 that any subset of n vectors will span the same space.) We thus
conclude:

A state-space representation in the form (4A.17) for a particular multiindex v, is
capable of describing almost all n-dimensional linear systems. (4A.32)

Overlapping Parametrizations

Let A; denote the model structure (4A.17) corresponding to v,. The result
(4A.31) theri implies that the model set

M=o, (4A.33)

(union over all possible multiindices v, ) covers all linear n-dimensional systems.
We have thus been able to describe the set of all linear z#-dimensional systems as the
union of ranges of identifiable structures [cf. (4.126)]. From (4A.32), it follows that
the ranges of M; overlap considerably. This is no disadvantage for identification; on
the contrary, one may then change from one structure to another without losing
information. The practical use of such overlapping parametrizations for identifica-
tion is discussed in van Overbeek and Ljung (1982). Using a topological argument,
Delchamps and Byrnes (1982) give estimates on the number of overlapping struc-
tures needed in (4A.33). See also Hannan and Kavalieris (1984).

Connections Between Matrix Fraction
and State-Space Descriptions

In the SISO case the connection between a state-space model in observability
form and the corresponding ARMAX model is simple and explicit (see Example
4.2). Unfortunately, the situation is much more complex in the multivariable case.
We refer to Gevers and Wertz (1984), Guidorzi (1981), and Beghelli and Guidorzi
(1983) for detailed discussions.

We may note, though, the close connection between the indexes v; used in
(4A.17) and the column degrees n; in (4A.7). Both determine the number of time
shifts of the ith component of y that are explicitly present in the representations.
The shifts are, however, forward for the state space and backward for the MFD.
The relationship between the v; and the observability indexes is sorted out in the
proof of Lemma 4A.2.

A practical difference between the two representations is that the state-space
representation naturally employs the state x (f) (n variables) as a memory vector for
simulation and other purposes. When (4A.2) is simulated in a straightforward
fashion, the different delayed components of y and u are stored, a total number of
np + m - X r; variables. This is of course not necessary, but an efficient organization
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of the variables to be stored amounts to a state-space representation. There are
consequently several advantages associated with state-space representations for
multivariable systems.

Proofs of Lemmas 4A.1 and 4A.2

It now remains only to prove Lemmas 4A.1 and 4A.2.
Proof of Lemma 4A.1. Let

x(t - 1)
S@) = x(t 2)
Let [cf. (4A.20) to (4A.22)]
Yo(t + kjt — 1) = —i H,x(t — ©) (4A.39)
and
Jo(tlt — 1)

() =

Yot + N =1t — 1)
Then, from (4A.28) and (4A.29),
Yl(t) = Hn S () (4A.35)
Now enumerate the row indexes i, of I; in (4A.24) as follows:
=1, L=p+1,...,i,=wn-1)p+1
et = 2, b+2=p+2,.. . ,,,=(wm—-1)p+2
(4A.36)

ir,,_,+1=P, irp-,+2=P+P,---,irp=(Vp—1)'p+P

Recall that
k

ry = 2 V;
1
Now construct the n-vector x(¢) by taking its 7th component to be the i,th com-
ponent of Yi(t). Let us now focus on the components iy + p,i, + p,...,i, + p of
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(4A.35). Collect these components into a vector £ + 1). They all correspond to
rows of #,.,. But this matrix is spanned by x(¢) by the assumption of the lemma.
Hence

&(r +1) = Fx(r) (4A.37)

for some matrix F. Now several of the components of (¢ + 1) will also belong to
x(t), as shown in (4A.36). The corresponding rows of F will then be zeros every-
where except for a 1 in one position. A moment’s reflection on (4A.36) shows that
the matrix F will in fact have the structure (4A.17). Also, with H given by (4A.17),

y(£) = Hx(t) + e(2) (4A.38)

Let us now return to (4A.37). Consider component r of x(¢ + 1), which by
definition equals row i, of Y,(¢ + 1). This row is given as y{’(+ + k|¢) for some values
j and k that depend on i,. But, according to (4A.34), we have

Yolt + k) = yo(t + klt — 1) + H, x(®) (4A.39)
Hence
X+ 1) =900 + kl) =50 — 1+ (k + D)t — 1) + [He x(@)];

But the first term of the right side equals component number i, + p of Y (¢) [i.e.,
&(t +1)]. Hence

x(t +1) = £¢ + 1) + Mx(D) (4A.40)

for some matrix M. Equations (4A.37), (4A.38), and (4A.40) now form a state-
space representation of (4A.27) within the structure (4A.17) and the lemma is
proved. W

Proof of Lemma 4A.2. The defining property of the Hankel matrix % in
(4A.29) means that the same matrix is obtained by either deleting the first block
column (and the last block row) or by deleting the first block row. This implies that,
if row i of block row k [i.e., row (k — 1)p + i] lies in the linear span of all rows
above it, then so must row i of block & + 1.

Now suppose that

rank #,., = n

and let us search the rows from above for a set of linearly independent ones. A row
that is not linearly dependent on the ones above it is thus included in the basis; the
others are rejected. When the search is finished, we have selected n rows from %, ;.
The observation mentioned previously implies that, if row kp + iis included in this
basis for k = 1, then so is row (k — 1)p + i. Hence the row indexes will obey the
structure

1, p+1, 2p+1,...,(c,-1p +1
2, p+2, 2p+2,...,(,-1)p +2
ppptp, 2p+p,...,(c,—1p+p
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for some numbers {o; } that are known as the observability indexes of the system.
Since the total number of selected rows is n, we have

P
E g, =n
1
The rows thus correspond to the multiindex &, as in (4A.24) and the lemma is

proved. Notice that several other multiindexes may give a spanning set of rows; one
does not have to look for the first linearly independent rows. B
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MODELS FOR TIME-VARYING
AND NONLINEAR SYSTEMS

While linear, time-invariant models no doubt form the most common way of de-
scribing a dynamical system, it is also quite often useful or necessary to employ
other descriptions. In this chapter we shall discuss linear, time-varying models as
well as various nonlinear models. We shall also give a formal account of what we
mean by a model in general, thus complementing the discussion in Section 4.5 on
general linear models.

5.1 LINEAR TIME-VARYING MODELS
Welghting Function
In Chapter 2 we defined a linear system as one where a linear combination of

inputs leads to the same linear combination of the corresponding outputs. A general
linear system can then be described by

y(@) = Elgr(k)u t=-k+v(@® (5.1)
If we write
gr(k) = g-(t’ t— k)
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we find that

YO = S gt uls) + v(e) (5.2)

§= -~

where g(z,5),t =s,s + 1,..., is the response at time ¢ to a unit input pulse at time
s. The function g (¢, s) is also known as the weighting function, since it describes the
weight that the input at time s has in the output at time ¢. '

The description (5.1) is quite analogous to the time-invariant model (2.8),
except that the sequence g.(k) carries the time index ¢ In general, we could
introduce a time-varying transfer function by

G(q) = kglg:(k)q"‘ (5.3)

and repeat most of the discussion in Section 4.2 for time-varying transfer functions.
In practice, though, it is easier to deal with time variation in state-space forms.

Time-Varying State-Space Model

Time variation in state-space models (4.88) is simply obtained by letting the
matrices be time varying:
x(t +1,8) =A,(0)x(t, 0) + B(0)u(r) + K,(0)e(r)
y(@) = C(0)x(t, 0) + e(?)
The predictor corresponding to (4.83) then becomes
£(t +1,0) =[A,(68) — K, (6)C.(9)](¢, 6)+ B,(0)u(t) + K, (O)y(t) (5.5)
¥(116) = C.(6)£(z, 6)

Notice that this can be written

(5.4)

©

5tl8) = S whk, Out — k) + Ewy(k o)(t - k) (5.6)

with

wi(k, 8) = C(6) H [4,(8) — K;(8)C;(6)1B.-(6)

j=t—k

(5.7)
wl (k, 8) = C.(0) H 14,0 - K;(6)C;(0)IK. - «(6)

j= t=
Similarly, we could start with a time-varying model like (4.81) and (4.82), where the
matrices A, B, C, R;, Ry, and R, are functions of ¢. The corresponding predictor
will then be given by (4.91) and (4.92).
Two common problems associated with time-invariant systems in fact lead to
time-varying descriptions: nonequal sampling intervals and linearization. If the
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system (4.59) and (4.60) is sampled at time instants t = &, k = 1,2, ..., we can still
apply the sampling formulas (4.63) to (4.65) to go from f to #., using T, =
tx+1 — 4. If this sampling interval is not constant, (4.64) will be a time-varying
system. A related case is when different variables are sampled at different rates. Then
the C,(#) matrix in (5.4) will be time varying in order to pick out the states that are
sampled at instant ¢.

Linearization of Nonlinear Systems

Perhaps the most common use of time-varying linear systems is related to
linearization of a nonlinear system around a certain trajectory. Suppose that a
nonlinear system is described by

x(t+ 1) =fx@).u@) +rx@),u®) w@
y(@) =h(x@) + mx@),u@)) v

Suppose also that the disturbance terms {w(¢)} and {v(¢)} are white and small, and
that the nominal, disturbance-free (w(t) =0; v(f) = 0) behavior of the system
corresponds to an input sequence u*(t) and corresponding trajectory x*(¢). Ne-
glecting nonlinear terms, the differences

Ax(t) = x(t) — x*(¢)

Ay(@®) =y(t) — h(x*(t))
Au(t) = u(t) — u*(z)

(5.8)

are then subject to
Ax(t + 1) = F(HAx(t) + G()Au () + w(r) 59
Ay (?) = H()Ax(2) + (1) )

where

G() = o fx, )

d
Fi)=—Ff(x,u
() = fx W o

@)

H(O) =~ h(x)

=0

Here we have neglected cross terms with the disturbance term (like Ax - v), in view
of our assumption of small disturbances. In (5.9), w(f) and V(¢) are white dis-
turbances with the following covariance properties:

Ry(t) = EW(@O)W'(£) = r(x* (), u* ())Ew ()W (O)r "(x* (1), u* (¢))
Ry(t) = EV()vT(t) = m(x* (), u* ) Ev()vT(O)mT(x* (£),u*(£))  (5.10)
Ru(t) = r(x* (0, u* ()Ew v (Om T (x* (1), u* (1))
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This model is now a linear, time-varying, approximate description of (5.8)in a
vicinity of the nominal trajectory.

5.2 NONLINEAR MODELS AS LINEAR REGRESSIONS

A nonlinear relationship between the input sequence and the output sequence as in
(5.8) clearly gives much richer possibilities to describe systems. At the same time,
the situation is far too flexible to allow for definite inference from finite data
records: Even a first-order (dimx = 1) model (5.8) without disturbances is specified
only up to members in a general infinite-dimensional function space [functions
f(-,-)and h(-)], while the corresponding linear model is characterized in terms of
two real numbers. Various possibilities of parametrizing the functions f and h in
general terms (e.g., polynomial approximations) exist, but in most cases it is
necessary to have some insight into the character of the nonlinearities to be able to
create reasonable model structures. In this section we shall describe how such
simple structures can be constructed, provided sufficient physical knowledge of the
process to be identified is at hand.

A Linear Regression Structure

In (4.12) we defined a linear regression as a model structure where the predic-
tion is linear in the parameters:

$(1l6) = ¢'(1)6 (5.11)

To describe a linear difference equation, the components of the vector ¢(r) (i.e., the
regressors) were chosen as lagged input and output values; see (4.11). When using
(5.11) it is, however, immaterial how ¢(¢) is formed; what matters is that itis a
known quantity at time ¢£. We can thus let it contain arbitrary transformations of
measured data. Let, as usual, y* and u' denote the input and output sequences from
s = 1tos = t. Then we could write

$(|6) = b@(uly ™)+ -+ 6, ea(u’,y' ) = ¢7(1)0 (5.12)

with arbitrary functions ¢; of past data. The structure (5.12) could be regarded as a
finite-dimensional parametrization of a general, unknown nonlinear predictor. The
key is how to choose the functions @:(u', y' 1), and this is where physical insight into
the system is required. The issue is best illustrated by an example.

Example 5.1 A Solar-heated House

Consider the problem to identify the dynamics of a solar-heated house, described in Example
1.1. We need a model of how the storage temperature y (f) is affected by fan velocity and solar
intensity. A straightforward linear model of the type (4.7) would be

y@O +ay(t—1)+ayt -2
=b1u(t—1)+b2u(t—2)+c11(t—1)+c21(t—2) (5.13)
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With this we have not used any physical insight into the heating process, but introduced the
black-box model (5.13) in an ad hoc manner. A moment’s reflection reveals that a linear
model is not very realistic. Clearly, the effects of solar intensity and fan velocity are not
additive. When the fan is off, the sun does not at all affect the storage temperature.

Let us go through what happens in the heating system. Introduce x(¢) for the tem-
perature of the solar panel collector at time ¢. With some simplifications, the physics can
be described as follows in discrete time: The heating of the air in the collector
[ =x(¢t + 1) — x(¢)] is equal to heat supplied by the sun [ = d. - I(f)] minus loss of heat to the
environment [ = d;- x(f)] minus the heat transported to storage [ = do-x(f) - u(f)]; that is,

x@+ 1) —x@) =doI(t) — dsx(t) — dox(t) - u(t) (5.14)

In the same way, the increase of storage temperature [ = y(¢ + 1) — y(#)] is equal to supplied
heat [ = dox(¢) - u(¢)] minus losses to the environment [ = d, y(¢)]; that is,

y+ 1) —y(@) =dox(u(t) — diy(2) (5.15)

In equations (5.14) and (5.15) the coefficients di are unknown constants, whose nu-
merical values are to be determined. The temperature x (¢) is not, however, measured, so we
first eliminate x (¢) from (5.14) and (5.15). This gives

y(@ = Du( - 1)
u(t —2)
y(t —2u@ —-1)
u(t -2
—dou(t — Dy (t — 1) +do(1 +d)u(t — 1)yt —2)

The relationship between the measured quantities y, u, and 7 and the parameters d; is
now more complicated. It can be simplified by reparametrization:

yO=1Q-d)y¢t-1) +(1-ds)

+(ds — DA +dy) + dodyu(t — DI —2)  (5.16)

B=(l-d) o)) =y(t = 1)
o (e = Du( - 1)
6= (1-dy) ) =
=(ds—1)(1+d) os(t) = y(t —2u( - 1)
u(t -2 (5.17)
04 = dodz ‘p4(t) = u(t - 1)I(t - 2)
05 = —do es(f) =u( -y -1
06 = do(1 + d) ee(t) = u(t — Nyt - 2)
6" =1[6:6,...6] ¢7(1) = [ex(®) @2(1) - - - ¢6(t)]
Then (5:16) can be rewritten as a true linear regression,
y (@) =5(t16) = ¢"(1)8 (5.18)

where we have a linear relationship between the new parameters ¢ and the constructed
measurements ¢(¢). (Notice that ¢ does not depend on 8.) The price for this is that the
knowledge of algebraic relationships between the 6;, according to (5.17), has been lost. Wl
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Hammerstein Model

Sometimes the nonlinearities in a system have the character of a static non-
linearity at the input side, while the dynamics itself is linear, as depicted in Figure
5.1. In case the nonlinearity f is known, we could simply redefine the input as
%(t) = f(u(t)) and treat the system as linear. When f is unknown, it could be
approximated by a polynomial expansion

fw) = ayu + ouu?+ -+ + au” (5.19)
and then let each power of u pass a different numerator dynamics:
A(q)y (1) = Bi(Qu(t) + Biq)u®(t) + -+ + Bu(@u™(®) (5.20)
where A (¢) and B;(g) are polynomials in the delay operator ¢ . With
0" =[a;...a, b ... bP"bP ... 6P .. b ... b]
'O =[-yt-1...—y@t —n)u@-1)...
ut-nult-1...u* ¢ —n)...u"t — 1)...u™t — n)]
(5.20) can be rewritten
y(t) = 5(116) = ¢7(1)0 (5.21)

and we have a special case of (5.12). The model (5.20) is known as a Hammerstein
model. It was apparently first discussed in an identification context by Narendra and
Gallman (1966).

ul(t) i Static flulth Linear yit
| Nonlinearity System ®  Figure 5.1 A system with a static non-

linearity at the input side.

5.3 NONLINEAR STATE-SPACE MODELS
A General Model Set

The most general description of a finite-dimensional system is
x(t + 1) = f(t, x(1), u (), w(®); 6)
y(8) = h(t, x(6),u(®),v(®); 6)

Here w(¢) and v(¢) are sequences of independent random variables and 6 denotes a
vector of unknown parameters. The problem to determine a predictor based on
(5.22) and on formal probabilistic grounds is substantial. In fact, this nonlinear
prediction problem is known to have no finite-dimensional solution except in some
isolated special cases.

Nevertheless, predictors for (5.22) can of course be constructed, either with ad
hoc approaches or by some approximation of the unrealizable optimal solution. For

(5.22)
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the latter problem, there is abundant literature (see, e.g., Jazwinski, 1970, or
Anderson and Moore, 1979). In either case the resulting predictor takes the form

y(tl6) =g, Z'""; 0) (5.23)
Here, for easier notation, we introduced
Z'=(yLu) = (y@),u(l)...y@),u®)

to denote the input-output measurements available at time ¢. This is the form in
which the model is put to use for identification purposes. We may thus view (5.23)
as the basic model, and disregard the route that took us from the underlying
description [like (5.22)] to the form (5.23). This is consistent with the view of models
as predictors that we took in Chapter 4; the only difference is that (5.23) is a
nonlinear function of past data, rather than a linear one. Just as in Chapter 4, the
model (5.23) can be complemented with assumptions about the associated predic-
tion error

e(t, ) =y(t)—gt,Z' "% 0) (5.24)

such as its covariance matrix, A(¢; 0) or its PDF f,(x, ¢; 6).

Nonlinear Simulation Model

A particularly simple way of deriving a predictor from (5.22) is to disregard
the process noise w(¢) and take

x(t+1,0) =f(@tx(t, 0),u(r),0; 8) (5.25)
y(t16) = h(t, x(2,0),u(?),0; )

We call such a predictor a simulation model, since y(t|0) is constructed by simu-
lating a noise-free model (5.22) using the actual input. Clearly, a simulation model
is almost as easy to use starting from a continuous-time representation:

dit x(1,0) = £(2, x(1, 8),u(r), 0; 0)

¥(£16) = h(z, x(t, 6),u(1),0; 6)
Example 5.2 Delignification

(5.26)

Consider the problem of reducing the lignin content of wood chips in a chemical mixture.
This is, basically, the process of cellulose cooking for obtaining pulp for paper making.
Introduce the following notation:

x(#): lignin concentration at time ¢
uy(#): absolute temperature at time ¢
ux(t): concentration of hydrogen sulfite, [HSO7 ]

us(t): concentration of hydrogen, [H*]

5.3 Nonlinear State-Space Models 133



Then basic chemical laws tell us that
% x(t) = —kie PO ()] - [ua(0)]" - [us()}P (5.27)

Here E, is the Arrhenius constant and k, , m, «, and B are other constants associated with the
reaction. Simulating (5.27) with the measured values of {u;(f),i = 1,2, 3} for given values of
6" = (E., k, k; ,m, o, B) gives a sequence of corresponding lignin concentrations {x (¢, 8)}. In
this case the system output is also the lignin concentration, so $(¢|8) = x (¢, 8). These pre-
dicted, or simulated, values can then be compared with the actually measured values so that
the errors associated with a particular value of @ can be evaluated. Such an application is
described in detail in Hagberg and Schoon (1974). B

5.4 FORMAL CHARACTERIZATION OF MODELS (*)

In this section we shall give a counterpart of the discussion of Section 4.5 for
general, possibly time-varying, and nonlinear models. We assume that the output is
p-dimensional and that the input is m-dimensional. Z* denotes, as before, the
input—output data up to and including time ¢.

Modeils

A model m of a dynamical system is a sequence of functions g,(t, Z'~'),t =
1,2,..., from R X RP¢~D x R™~1 to R, representing a way of guessing or pre-
dicting the output y (¢) from past data:

Pt —1) =gn(t, 27" (5.28)

A model that defines only the predictor function is called a predictor model.
When (5.28) is complemented with the conditional (given Z*~ ') probability density
function (CPDF) of the associated prediction errors

fo(x,t,Z'""): CPDFofy(s) — y(¢t|t = 1), givenZ'"! (5.29)

we call the model a complete probabilistic model. A typical model assumption is that
the prediction errors are independent. Then f, does not depend on Z*~ ;

f:(x,9): PDFofy(f) — y(¢|t — 1): these errors independent  (5.30)

Sometimes one may prefer not to specify the complete PDF but only its
second moment (the covariance matrix):

A.(t): covariance matrix of y (¢) — (¢t — 1)
these errors independent (5.31)

A model (5.28) together with (5.31) could be called a partial probabilistic model.
A model can further be classified according to the following properties.
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1. The model m is said to be linear if g,.(t, Z° ') is linear in y* "' and u'~

gnl(t, Z'7 1) = Wi(qy (1) + Wi(qu(r) (5.32)

2. A model m is said to be time invariant if g,,(t, Z' ~ ) is invariant under a shift of
absolute time. If A, or f, is specified, it is further required that they be
independent of ¢.

3. A model m is said to be a k-step-ahead predictor if g,(t, Z' ) is a function of
yt k ur 1only

4. A model m is said to be a simulation model or an output error model if

8m(t, Z' 1) is a function of u'~ ! only.

Analogously to the linear case, we could define the stability of the predictor
function and equality between different models [see (4.113)]. We refrain, however,
from elaborating on these points here.

Model Sets and Model Structures

Sets of models M* as well as model structures .M as differentiable mappings
M:O—>g(t,Z'"0)€ M*;0 € D,CR? (5.33)

[and A(t; 6) or f.(x, t; 8) if applicable] from subsets of R? to model sets can be
defined analogously to Definition 4.3. Once equality between models has been
defined, identifiability concepts can be developed as in Section 4.5.

We shall say that a model structure M is a linear regression if D4 = R* and the
predictor function is a linear (or affine) function of 6:

gtZ'""50)=9"(t, Z" Y0 + n(t, Z'7YH (5.34)
Another View of Models (*)

The definition of models as predictors is a rather pragmatic way of ap-
proaching the model concept. A more abstract line of thought can be developed as
follows.

As users, we communicate with the system only through the input—output data
sequences Z' = (y',u’). Therefore, any assumption about the properties of the
system will be an assumption about Z*. We could thus say that

A model of a system is an assumed relationship for Z,t = 1,2,.... (5.35)

Often, experlments on a system are not exactly reproduc1ble For a given input
sequence u”, we may obtain different output sequences y" at different experlments
due to the presence of various disturbances. In such cases it is natural to regard y* as
a random variable of which we observe different realizations. A model of the system
would then be a description of the probabilistic properties of Z* (or, perhaps, of y",
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given u‘). This model m could be formulated in terms of a probability measure P, or
the probability density function (PDF) for Z*

flt, ZY (5.36)
That is,

P.(Z'€ B) = f , Bf,,,(t,x‘)dx' (5.37)

Sometimes it is preferable to consider the input ' as a given deterministic sequence
and focus attention on the conditional PDF of y*, given u":

Fult, ylut') (5.38)

A model (5.36) or (5.38) would normally be quite awkward to construct and
work with, and other, indirect ways of forming f,, will be preferred. Indeed, the
stochastic models of Sections 4.2 and 4.3 are implicit descriptions of the probability
density function for the measured signals. The introduction of unmeasurable, sto-
chastic disturbances {w ()}, {e(¢)}, and so on, is a convenient way of describing the
probabilistic properties of the observed signal, and also often corresponds to an
intuitive feeling for how the output is generated. It is, however, worth noting that
the effect of these unmeasurable disturbances in the model is just to define the PDF
for the observed signals.

The assumed PDF f,, in (5.36) is in a sense the most general model that can be
applied for an observed data record y’, u'. It includes deterministic models as a
special case. It also corresponds to a general statistical problem: how to describe the
properties of an observed data vector. For our current purposes, it is, however, not
a suitably structured model. The natural direction of time flow in the data record, as
well as the notions of causality, is not present in (5.36).

Given f,(t, Z*) in (5.36), it is, at least conceptually, possible to compute the
conditional mean of y (¢) given y*~ !, u’ " !; that is,

Yt = 1) = ELy@ly' " u' "1 = gult, 271 (5:39)

and the distribution of y (¢) — g.(t, Z' "), say f.(x, t, Z'~'). From (5.36) we can thus
compute a model (5.28) along with a CPDF f, in (5.29). Conversely, given the
predictor function g,,(¢, Z* ~ ') and an assumed PDF f, (x, 1) for the associated predic-
tion errors, we can calculate the joint PDF for the data y‘, u* as in (5.36). This
follows from the following lemma:

Lemma 5.1. Suppose that u'is a given, deterministic sequence, and assume
that the generation of y’ is described by the model

y(@) = gn(t, Z'" ) + e() (5.40)

where the conditional PDF of ¢,(f) (given y*~ ', u’ ") is f.(x, ). Then the joint
probability density function for y*, given u/, is

flt, ylut) = ,Elfe(y(k) — gnlk, Z7"), k) (5.41)
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Here we have, for convenience, denoted the dummy variable x, for the distribution
of y (k) by y (k) itself.

Proof. The output y (¢) is generated by (5.40). Hence the CPDF of y (¢), given
Z'"1is

pe|Z ™Y = folx — gult, Z'71), ) (5.42)

Using Bayes’s rule (I1.10), the joint CPDF of y(¢) and y(¢ — 1), given Z'~?, can be
expressed as

PGoxA|Z7) =pCaly(t = 1) =x-1,Z") p(x,-1|Z'7)
=fee — gt Z'70), 0 fo(xe1 — gt = 1,Z'7%),t — 1)

where y (¢t — 1) ing,.(t, Z' ~ ') should be replaced by x,_ ; . Here we have assumed u*
to be a given deterministic sequence. Iterating the preceding expression to ¢ = 1
gives the joint probability density function of y (¢),y (t — 1),. .., y(1), given u’, that
is, the function f,,(¢, y'u’) in (5.41). W

The important conclusion from this discussion is that the predictor model
(5.28), complemented with an assumed PDF for the associated prediction errors, is
no more and no less general than the general, unstructured joint PDF model (5.36).

Remark. Notice the slight difference, though, in the conditional PDF for the
prediction errors. The general form (5.36) may in general lead to a conditional PDF
that in fact depends on Z*~%; f,(x, ¢, Z'~ ') as in (5.29). This means that the predic-
tion errors are not necessarily independent, while they do form a martingale differ-
ence sequence:

E[en(len(t — 1), . . ., en(1)] = 0 (5.43)

In the predictor formulation (5.40), we assumed the CPDF f, (x, £) not to depend on
Z'~1, which is an implied assumption of independence of ¢,,(f) on previous data.
Clearly, though, we could have relaxed that assumption with obvious modifications
in(5.41)asaresult. A

5.5 SUMMARY

The development of models for nonlinear systems is quite analogous to that for
linear systems. The basic difference from a formal point of view is that the predictor
function becomes a nonlinear function of past observations. The important differ-
ence from a practical point of view is that the potential richness of possibilities
makes unstructured, “black-box”-type models unfeasible in most cases. Instead,
knowledge about the character of the nonlinearities will have to be built into the
models. Such structure does not, however, have to be in analytic form. The
nonlinearities could very well be defined in look-up tables, and the model param-
eters could be entries in these tables.
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We have also given a short summary of formal aspects of models of dynamical
systems. We have stressed that a model in the first place is a predictor function from
past observations to the future output. The predictor function may possibly be
complemented with a model assumption of properties of the associated prediction
error, such as its variance or its PDF.

5.6 BIBLIOGRAPHY

Models for identification of nonlinear systems are discussed in the surveys by Haber
and Keviczky (1976), Mehra (1979), and Billings (1980). Leontaritis and Billings
(1985) give a thorough treatment of various parametric models, such as NARMAX
(nonlinear ARMAX; cf. Problem 5G.1). The Hammerstein model was apparently
first discussed in Narendra and Gallman (1966). The nonlinear simulation model,
like (5.25) and (5.26), is frequently used in application areas where considerable a
priori information is available. A typical such area is identification of aircraft
dynamics. See Griibel (1985) for a treatment of such problems.

Applications of various parametric estimation techniques to nonlinear
parametric structures are discussed in, for example, Billings and Voon (1984), Gabr
and Subba Rao (1984), and Stoica and Soderstrdm (1982b). Recursive techniques
are treated by Fnaiech and Ljung (1986).

A general discussion of the model concept is given by Willems (1985).

5.7 PROBLEMS

5G.1. Consider the following nonlinear structure:

x(0) =fx( = 1),...,x(t —n)ut—1),...,u( —n)j )] (5.44a)
y(@ =x@) +v() (5.44b)
v(t) = H(g,0)e(?) (5.44¢)

Here (5.44a) describes the nonlinear noise-free dynamics, parametrized by 6, while
(5.44b) describes the measurements as the noise-free output, corrupted by the noise
{v (1)}, which is modeled in the general way (2.19). Show that the natural predictor for
(5.44) is given by

$(¢l0) =1 — H™(g,0)]y(®) + H™(q,0)x(16)
where x(¢,9) is defined by
x(,0) =flx(t — 1,8),...,x(t —n,0),u(t — 1),...,u(t —n);6)
5E.1. Consider the bilinear model structure described by
x(f) +arx(t = 1) + ax(t —2) =bu(t - 1) + bau(t —2) + ax{t = Du(t—-1)
y@)=x() +v(@)
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SE.2.

5T.2

where

6= [a1 a b] bz C1 ]T
(@) Assume {v()} to be white noise and compute the predictor y(¢|6) and give an
expression for it in the pseudolinear regression form

y(tl6) = ¢7(1, 6)0

with a suitable vector ¢(z, 6).
(b) Now suppose that {v(¢)} is not white, but can be modeled as an (unknown) first-
.order ARMA process. Then suggest a suitable predictor for the system.

Consider the system in Figure 5.1, where the nonlinearity is saturation with an un-
known gain:

6 -6, ifu(® > 6
fu@) =9 ow(r), if lu ()| < 6,

—6,:6,, ifu(d< -6

Suppose that the linear system can be described by a second-order ARX model. Write
down, explicitly, the predictor for this model, parametrized in 6,, 6, and the ARX
parameters.

- Time-continuous bilinear system descriptions are common in many fields (see Mohler,

1973). A model can be written
x(t) = A(0)x(t) + B(O)u(t) + G(O)x(t)-u(t) + w(r) (5.45a)

where x(¢) is the state vector, w(t) is white Gaussian noise with variance matrix R,,
and u(¢) is a scalar input. The output of the system is sampled as

() = C(@)x(t) + e(r), fort =k-T (5.45b)
where e(?) is white Gaussian measurement noise with variance R, . The input is piece-
wise constant:

u(t) = ug, kT =t <(k + DT

Derive an expression for the prediction of y (k + DT),givenu,andy(r - T) for r < k,
based on the model (5.45).

Consider the Monod growth model structure

. 6, x;
X1 = X1 o1 X
YT e,
X =1 6% X (x )
_—e———— . —a _a
2T Gy, 0 2T

¥ = [x1 x2]" is measured and @, and a, are known constants. Discuss whether the
parameters 6, , 6, and & are identifiable.

Remark: Although we did not give any formal definition of identifiability for
nonlinear model structures, they are quite analogous to the definitions in Sections 4.5
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and 4.6. Thus, test whether two different parameter values can give the same input-
output behavior of the model.

[See Holmberg and Ranta (1982). x; here is the concentration of the biomass that
is growing, while x, is the concentration of the growth limiting substrate. 6, is the

maximum growth rate, & is the Michaelis Menten constant, and 6, is the yield coeffi-
cient.]
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II methods

NONPARAMETRIC TIME- AND
FREQUENCY-DOMAIN METHODS

A linear time-invariant model can be described by its transfer functions or by the
corresponding impulse responses, as we found in Chapter 4. In this chapter we shall
discuss methods that aim at determining these functions by direct techniques with-
out first selecting a confined set of possible models. Such methods are often also
called nonparametric since they do not (explicitly) employ a finite-dimensional
parameter vector in the search for a best description. We shall discuss the deter-
mination of the transfer function G (q) from input to output. Section 6.1 deals with
time-domain methods for this, and Sections 6.2 to 6.4 describe frequency-domain
techniques of various degrees of sophistication. The determination of H(q) or the
disturbance spectrum is discussed in Section 6.5.

It should be noted that throughout this chapter we assume the system to
operate in open loop [i.e., {u(#)} and {v(¢)} are independent]. Closed-loop config-
urations will typically lead to problems for nonparametric methods, as outlined in
some of the problems. These issues are discussed in more detail in Chapter 14.

6.1 TRANSIENT-RESPONSE ANALYSIS AND CORRELATION ANALYSIS

Impulse-Response Analysis

If a system that is described by (2.8)
y(8) = Go(@u(®) + v() (6.1)
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is subjected to a pulse input

_Ja, t=0
u(t) = {0, 140 (6.2)
then the output will be
y () = ago(t) + v(r) 6.3)

by definition of Gy and the impulse response {g«(£)}. If the noise level is low, it is thus
possible to determine the impulse-response coefficients {g,(#)} from an experiment
with a pulse input. The estimates will be

by =22 (64)

and the errors v(f)/a. This simple idea is impulse-response analysis. Its basic
weakness is that many physical processes do not allow pulse inputs of such an
amplitude that the error v(f)/a is insignificant compared to the impulse-response
coefficients. Moreover, such an input could make the system exhibit nonlinear
effects that would disturb the linearized behavior we have set out to model.

Step-Response Analysis

Similarly, a step

. t=0
u(t)={g, t<0

applied to (6.1) gives the output

t
y(©) = akgl go(k) + v(©) (6.5)
From this, qstimates of go(k) could be obtained as
n ) —y(t-1
g =2y -D ﬁ( ) (6.6)

which has an error [v(f) — v(t — 1)]/o. If we really aim at determining the
impulse-response coefficients using (6.6), we would suffer from large errors in most
practical applications. However, if the goal is to determine some basic control-
related characteristics, such as delay time, static gain, and dominating time con-
stants [i.e., the model (4.47)], step responses (6.5) can very well furnish that
information to a sufficient degree of accuracy. In fact, well-known rules for tuning
simple regulators such as the Ziegler—Nichols rule (Ziegler and Nichols, 1942) are
based on model information reached in step responses.

Based on plots of the step response, some characteristic numbers can be
graphically constructed, which in turn can be used to determine parameters in a
model of given order. We refer to Rake (1980) for a discussion of such character-
istics.
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Correlation Analysis

Consider the model description (6.1):
y(0) = 2 glku(t — k) +v() (6.7)
k=1
If the input is a quasi-stationary sequence [see (2.59)] with

Eu(®u(t — 1) = R,(7)
and
Eu(t)v(t —7)=0  (open-loop operation)

then according to Theorem 2.2 (expressed in the time domain)

Ey@u(t —7) = Ru(®) = 2 glk)Ru(k — 7) (6.8)
k=1
If the input is chosen as white noise so that
R,(7) = ady
then
R, (7
go(r) = ™)

An estimate of the impulse response is thus obtained from an estimate of R,,(7); for
example,

. 1 &
RL() =% 2 y(oul - ) (6.9
t=n1
If the input is not white noise, we may estimate
N
R =% 2 u@u(t - ) (6.10)
t=1
and solve u
Ri() = 2 (kR (k = 7) (6.11)
k=1

for g (k). If the input is open for manipulation, it is of course desirable to choose it so
that (6.10) and (6.11) become easy to solve. Equipment for generating such signals
and solving for g(k) is commercially available. See Godfrey (1980) for a more
detailed treatment.

6.2 FREQUENCY-RESPONSE ANALYSIS
Sine-wave Testing
The fundamental physical interpretation of the transfer function G(z) is that

the complex number G(e™) bears information about what happens to an input
sinusoid [see (2.32) to (2.34)]. We thus have for (6.1) that with

u(t) = a cos wt, t=0,1,2,... (6.12)
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then
y(t) = o|Go(e™)|cos(wt + @) + v(t) + transient (6.13)
where
¢ = arg Go(e™) (6.14)

This property also gives a clue to a simple way of determining Gy(e*):

With the input (6.12), determine the amplitude and the phase shift of the re-
sulting output cosine signal, and calculate an estimate Gw(e™) based on that
information. Repeat for a number of frequencies in the interesting frequency
band.

This is known as a frequency analysis and is a simple method for obtaining detailed
information about a linear system.

Frequency Analysis by the Correlation Method

With the noise component v(¢) present in (6.13), it may be cumbersome to
determine |Go(e*)| and ¢ accurately by graphic methods. Since the interesting
component of y (f) is a cosine function of known frequency, it is possible to correlate
it out from the noise in the following way. Form the sums

L(N) = %ﬁl y(@coswt, L(N)= —},i y(¢) sin ot (6.15)

Inserting (6.13) into (6.15), ignoring the transient term, gives
N N
LOV) =L S o|Gy(e®)] cos(wt + ¢) cost + = 3 v(f) cos wt
N! =1 Nt =1
w113
= a|Gy(e™)| N 2 [cos ¢ + cos(Rut + ¢))
=1

N

+1% > v(t) coswt (6.16)
t=1

N
= 2 1Gy(e™)| cose + alGole®) 22 S cos(2ut + ¢)
2 INZ,

1 N
+3 2 v(f) coswt
N ®
The second term tends to zero as N tends to infinity, and so does the third term if
v(f) does not contain a pure periodic component of frequency w. If {v(s)} is a
stationary stochastic process such that
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©

2R (7)| <

0

then the variance of the third term of (6.16) decays like 1/N (Problem 6T.2).
Similarly,

e oy 11 S
L(N) = —% |Go(e™)|sin @ + o|Go(e™)| %thl sinQRwt + ¢)

N 6.17)
+ 1 > v(t) sin wt
N =1
These two expressions suggest the following estimates of |Go(e™)| and ¢:
A VI}(N) + I*(N)
|Gn(e™) = o2 (6.18a)
. AL L(N
¢n = arg Gy(e') = —arctan (V) (6.18b)

I.(N)

Rake (1980) and Astrém (1975) give a more detailed account of this method. By
repeating the procedure for a number of frequencies, a good picture of Go(e™) over
the frequency domain of interest can be obtained. Equipment that performs such
frequency analysis by the correlation method is commercially available.

An advantage with this method is that a Bode plot of the system can be
obtained easily and that one may concentrate the effort to the interesting frequency
ranges. The main disadvantage is that many industrial processes do not admit
sinusodial inputs in normal operation. The experiment must also be repeated for a
number of frequencies which may lead to long experimentation periods.

Relationshlip to Fourier Analysis

Comparing (6.15) to the definition (2.37),

N
Y(w) = —= 3 y(e)e (6.19)
Nt =1
shows that
. 1
IL(N)—il,(N)=—=Y, .
(N)—iL(N) i V() (6.20)
As in (2.46) we find that, for (6.12),
VN
Un(§) = > 2 ift=e= Z;—r for some integer r (6.21)
It is straightforward to rearrange (6.18) as
n VN Yi(w)
Gn(Ee™) =—Napn (6.22)
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which, using (6.21), means that

YN ((.0)
Un (o)
Here  is precisely the frequency of the input signal. Comparing with (2.53), we also

find (6.23) a most reasonable estimate [especially since Ry(w) in (2.53) is zero for
periodic inputs, according to the corollary of Theorem 2.1].

Gy(e™) = (6.23)

6.3 FOURIER ANALYSIS
Empirical Transfer-function Estimate

We found the expression (6.23) to correspond to frequency analysis with a
single sinusoid of frequency w as input. In a linear system, different frequencies pass
through the system independently of each other. It is therefore quite natural to
extend the frequency analysis estimate (6.23) also to the case of multifrequency
inputs. That is, we introduce the following estimate of the transfer function:

2 Yv
Gn(e™) =U~% (6.24)

with Yy and Uy defined by (6.19) and (2.37), respectively, also for the case where
the input is not a single sinusoid. This estimate is also quite natural in view of
Theorem 2.1. .

We shall call Gy(e®) the empirical transfer-function estimate (ETFE), for
reasons that we shall discuss shortly. In (6.24) we assume of course that Uy(w) # 0.
If this does not hold for some frequencies, we simply regard the ETFE as undefined
at those frequencies. We call this estimate empirical, since no other assumptions
have been imposed than linearity of the system. In the case of multifrequency
inputs, the ETFE consists of N /2 essential points. [Recall that estimates at fre-

quencies intermediate to the grid w = 2wk /N, k =0,1,..., N — 1, are obtained
by trigonometrical interpolation in (2.37). Also, since y and u are real, we have
éN(eZﬁiHN) — E‘;N(ez-rri(N— k)/N) (625)

(compare (2.40) and (2.41)].
The original data sequence consisting of 2N numbers y (¢), u(?),t = 1,2,.. .,
N, has thus been condensed into the N numbers

N_
72
This is quite a modest data reduction, revealing that most of the information
contained in the original data y, u still is quite “raw.”

ReGn(e™™),  ImGn(e™), k=0,1,... 1
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In addition to an extension of frequency analysis, the ETFE can be
interpreted as a way of (approximately) solving the set of convolution equations

N
y@© =2 gkut -k, t=12,...,N (6.26)
k=1
for go(k),k = 1,2,..., N, using Fourier techniques.
Properties of the ETFE

Assume that the system is subject to (6.1). Introducing
N

Vi () =71_1T/ S v ()e (6.27)

t=1
for the disturbance term, we find from Theorem 2.1 that
RN((J.)) + VN ((.0)
Uv(o)  Uv(w)
where the term Ry(w) is subject to (2.54) and decays as 1/V'N._

Let us now investigate the influence of the term Vy(w) on GN (e™). Since v (£) is
assumed to have zero mean value,

EVa(0)=0, Vo

GN(e ) Go(e"") + ——"= (628)

so that

EG ) = G (e) + =222 Ry (w) .
Here expectation is with respect to {v(t)}, assuming {u ()} to be a given sequence of
numbers.
Let the covariance function R, (1) and the spectrum ®, (w) of the process {v(¢)}
be defined by (2.14) and (2. 63) Then evaluate

EVy(@)Wn(—-§) =% 2 2 Ev(rje ™ v(s)e*®

rlsl

—E Ze'("‘ R, (r—s)=[r—s=n1]

Nr 1 s=1
1 N r—1
el t(g—w)r. —itr
N g T =§— NRV(T)e
Now
r—1 r—N-1 ©
Y RMe®=d,) - 2 e®R,(1)— > e FR,(7)
7=r—N 1= - T=r
and
1 ¥ - oy 1 ifétE=w
N2 =10, ifE-w) =20 k=xl22,. =N -1)
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Consider
r—N-1

Ly L N rao
NE elk-or. ¥ e R (1) =3 > 2 [R.®@)
r=1

T = —w r=11=-=

< [change order of summation}

provided
2l R,() < (6.30)

Similarly,

L3 e 3 ewr@| =4S ROI=g
Nr=1 T=r ' N 1 ’ N

Combining these expressions, we find that

EVi{(0)Va(—§)

[va(w) +pN), iff=e
= (6.31)
0:(N), ifle - ol =527, k=12, ,N-1
with
2C
‘pZ(N )| = N
These calculations can be summarized as the following result.
Lemma 6.1. Consider a strictly stable system
y(t) = Golqu(t) + v(1) (6.32)

with a disturbance {v (¢)} being a stationary stochastic process with spectrum ®, ()
and covariance function R, (t), subject to (6.30). Let {u ()} be independent of {v (£)}
and assume that [u(f)] = C for all £. Then with Gy (e™) defined by (6.24), we have

pi(N)

EGr(e™) = Gole™) + T (6.33a)
where
loy(N)| = —\% (6.33b)

148 Nonparametric Time- and Frequency-Domain Methods



and
E[Gn(e®) — Gole)[Gn(e™) ~ Gole )]

1 o
i W[d)v(w) +pN)], ifE=o

- ( (6.34a)
(N el _ 1 _ 2wk _ _
Un()Un(—€)’ iflg- ol =57, k=1,2,...,N-1

where
IPZ(N)' = % (6.34b)

Here Uy is defined by (2.37), and we restrict ourselves to frequencies for which éN is
defined. According to Theorem 2.1 and (6.30), the constants can be taken as

C = (2 i |kg0(k)l) - max |u(?)| (6.35a)

C.=C?+ 2 7R, (7)) (6.35b)

k=—x
If {u ()} is periodic with period N, then C; = 0. W

Remark. Note that the input is regarded as a given sequence. Probabilistic
quantities, such as E, “bias,” and “variance” refer to the probability space of {v (¢)}.
This does not, of course, exclude that the input may be generated as a realization of
a stochastic process independent of {v(¢)}. W

The properties of the ETFE are closely related to those of periodogram
estimates of spectra. See (2.43) and (2.72). We have the following result.

Lemma 6.2. Let v(¢) be given by

v(t) = H(g)e ()

where {e()} is a white-noise sequence with variance \ and fourth moment p2, and H
is a strictly stable filter. Let Vy(w) be defined by (6.27), and let ®,(w) be the
spectrum of v(¢). Then

E|Vi(w)f' = @,(w) + ps(N) (6.36)
E([VM)P - @, (@))(VME) — @, (£))
3 [[CDV("‘))]2 + py(N), f§=w w+#0,n

) iflg- ol = 22K, k=1,2,...,N-1

(6.37)
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where
C C
sl =5, ) =x

Proof. Equation (6.36) is a restatement of (6.31). A simple proof of (6.37) is
outlined in Problem 6D.2 under somewhat more restrictive conditions. A full proof
can be given by direct evaluation of (6.37). See, for example, Brillinger (1981),
Theorem 5.2.4, for that. See Problem 6G.5 for ideas on how the bias term can be
improved by the use of data tapering. B

These lemmas, together with the results of Section 2.3, tell us the following:

Case1. The input is periodic. When the input is periodic and N is a multiple
of the period, we know from Example 2.2 that |Uy(w)[? increases like const - N for
some o and is zero for others [see (2.49)]. The number of frequencies w = 2wk/N
for which |Uy(w)[? is nonzero, and hence for which the ETFE is defined, is fixed
and no more than the period length of the signal. We thus find that

@ The ETFE éN (e™) is defined only for a fixed number of frequencies.
@ At these frequencies the ETFE is unbiased and its variance decays like 1/N.

We note that the results (6.17) on frequency analysis by the correlation
method are obtained as a special case.

Case2. Theinputis a realization of stochastic process. Lemma 6.2 shows that
the periodogram |Uy ()} is an erratic function of w, which fluctuates around &, (0),
which we assume to be bounded. Lemma 6.1 thus tells us that
@ The ETFE is an asymptotically unbiased estimate of the transfer function at
increasingly (with N) many frequencies.

® The variance of the ETFE does not decrease as N increases, and it is given as
the noise-to-signal ratio at the frequency in question.

@ The estimates at different frequencies are asymptotically uncorrelated.

It follows from this discussion that, in the case of a periodic input signal, the
ETFE will be of increasingly good quality at the frequencies that are present in the
input. However, when the input is not periodic, the variance does not decay with N,
but remains equal to the noise-to-signal ratio at the corresponding frequency. This
latter property makes the empirical estimate a very crude estimate in most cases in
practice.

It is easy to understand the reason why the variance does not decrease with N.
We determine as many independent estimates as we have data points. In other
words, we have no feature of data and information compression. This in turn is due
to the fact that we have only assumed linearity about the true system. Consequently,
the system’s properties at different frequencies may be totally unrelated. From this
it also follows that the only possibility to increase the information per estimated
parameter is to assume that the system’s behavior at one frequency is related to that
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at another. In the subsequent section, we shall discuss one approach to how this can
be done.

6.4. SPECTRAL ANALYSIS

Spectral analysis for determining transfer functions of linear systems was developed
from statistical methods for spectral estimation. Good accounts of this method are
given in Chapter 10 in Jenkins and Watts (1968) and in Chapter 6 in Brillinger
(1981), and the method is widely discussed in many other textbooks on time series
analysis. In this section we shall adopt a slightly unusual approach to the subject by
deriving the standard techniques as a smoothed version of the ETFE.

Smoothing the ETFE

We mentioned at the end of the previous section that the only way to improve
on the poor variance properties of the ETFE is to assume that the values of the true
transfer function at different frequencies are related. We shall now introduce the
rather reasonable prejudice that

The true transfer function Go(e’) is a smooth function of o. (6.38)

If now the frequency distance 2w/N is small compared to how quickly Gy(e™)
changes, then i
Gn(e™* ™), kinteger, 2mk/N = (6.39)

are uncorrelated, unbiased estimates of roughly the same constant Go(e™), each
with a variance of

®,(2wk/N)

|Uy(2mk IN)

according to Lemma 6.1. Here we neglected terms that tend to zero as N tends to
infinity.
If we assume Gy(e™) to be constant over the interval
2‘n'k1 _ _ 2'rrk2
N - Ao<ow < o+ Aw = N
then it is well known that the best (in a minimum variance sense) way to estimate
this constant is to form a weighted average of the “measurements” (6.39) for the
frequencies (6.40), each measurement weighted according to its inverse variance
[compare Problem 6E.3, and Lemma I1.2, (I1.58), in Appendix II]:
k2 2
2 o GN(eZwik/N)
Gr(e) = —— (6.41a)

(6.40)
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|Uy 2k IN)
®,(2mk/N)

For large N we could with good approximation work with the integrals that
correspond to the (Riemann) sums in (6.41a):

(6.41b)

o =

+ Aw

a(&)Gn(e®)dt
Glem) = == (6.42a)
a(§)dg
£=w— Aw
|UnO)I
a(f) = @, () (6.42b)

If the transfer function G is not constant over the interval (6.40) it is reason-
able to use an additional weighting that pays more attention to frequencies close to

Wo - _
[ wie - en)a®Cn(es
Gy(e™) = —

- (6.43)
" Wi~ anacae

Here W,(£) is a function centered around £ = 0 and v is a “‘shape parameter,”
which we shall discuss shortly.
Clearly, (6.42) corresponds to

_ 1L &< Ae
WO =1 [£S A (6.44)

Now, if the noise spectrum @, (w) is known, the estimate (6.43) can be realized as
written. If ®,(w) is not known we could argue as follows: Suppose that the noise
spectrum does not change very much over frequency intervals corresponding to the
“width” of the weighting function W,(£):

" 1
j—«M(g ~ o) E’E , (wo)

Then a(£) in (6.42b) can be replaced by a(§) = |Un(£)[/®P, (wo ), which means that
the constant ®,(w;) cancels when (6.43) is formed. Under (6.45) the estimate

d& = “small” (6.45)

) " Wy — wolUn(®)Gn(e®) dt
Gul(e™) = —— (6.46)
[ wite - wolunare g

is thus a good approximation of (6.42b) and (6.43).
We may remark that, if (6.45) does not hold, it might be better to include a
procedure where @, (w) is estimated and use that estimate in (6.43).
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Connection with the Blackman—Tukey Procedure (*)

Consider the denominator of (6.46). It is a weighted average of the periodo-
gram |Uy (€)%, Using the result (2.72), we find that, as N — o,

| e - an)lun@Pde— | we - oo @ae (6.47)
where ®,(w) is the spectrum of {u ()}, as defined by (2.61) to (2.63). If, moreover,
| wede =1
and the weighting function W,(£) is concentrated around £ = 0 with a width over

which ®,(w) does not change much, then the right side of (6.47) is close to ®, (wy ).
‘We may thus interpret the left side as an estimate of this quantity:

B (w0 = [ W€ - wo)lUn (©F 0 (6.48)

Similarly, since

WE)

o = HOU® (6.49)

NP Gule®) = [Un(©F
we have that the numerator of (6.46)
(w0 = || Wil - ) H(OT(E)E (6.50)

is an estimate of the cross spectrum between output and input. The transfer function
estimate (6.46) is thus the ratio of two spectral estimates:

B, (wo)

Gu(e'™) = Y (wo)

(6.51)

which makes sense, in view of (2.78). The spectral estimates (6.48) and (6.50) are
the standard estimates, suggested in the literature, for spectra and cross spectra as
smoothed periodograms. See Blackman and Tukey (1958), Jenkins and Watts
(1968), or Brillinger (1981).

An alternative way of expressing these estimates is common. The Fourier
coefficients for the periodogram |Uy(w)|* are

% u(®u(t — ) (6.52)

5 1" itw 1
R =3[ UnPemdo =53
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[For this expression to hold exactly, the values u(s) outside the interval 1 <5 < N
have to be interpreted by periodic continuation; i.e., u(s) = u(s — N)ifs > N; see
Problem 6D.1.]

Similarly, let the Fourier coefficients of the function W,(§) be

wi) = [ W@ e (6.53)

Since the integral (6.48) is a convolution, its Fourier coefficients will be the product
of (6.52) and (6.53), so a Fourier expansion of (6.48) gives

SV (w) = > w(7)-RY(x)e ™ (6.54)
The idea is now that the nice, smooth function W,(£) is chosen so that its Fourier
coefficients vanish for |1| > 8,, where typically 3, << N. It is consequently sufficient
to form (6.52) (using the rightmost expression) for |7| =< 8, and then take
B'Y
PV (w) = 2 w()RY(v)e ™ (6.55)

7= -8,

This is perhaps the most convenient way of forming the spectral estimate. The
expressions for <I>yu (w) are of course analogous.

Weighting Function W,(£): The Frequency Window

Let us now discuss the weighting function W,(£). In spectral analysis, it is often
called the frequency window. [Similarly, w,(7) is called the lag window.] If this
window is “wide,” then many different frequencies will be weighted together in
(6.40). This should lead to a small variance of Gy(e). At the same time, a wide
window will involve frequency estimates farther away from o, , with expected values
that may differ considerably from Go(e**). This will cause large bias. The width of
the window will thus control the trade-off between bias and variance. To make this
trade-off a bit more formal, we shall use the scalar vy to describe the width, so a large
value of y corresponds to a narrow window.

We shall characterize the window by the following numbers

[ w@ae=1, [ em@ae=o, [ ewode=ma) (6.563)

[[Epw@de=cn, [ wode=5-We)  @S60)

As v increases (and the frequency window gets more narrow), the number M (y)
decreases, while W (y) increases.

Some typical windows are given in Table 6.1. [See, also, Table 3.3.1 in Bril-
linger (1981) for a more complete collection of windows.] Notice that the scaling
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TABLE 6.1 Some Windows for Spectral Analysis

27 Wy(w) wy(1), O=<hl=y
i /22
Bartlett 1 (s‘f’ o ) .
Y \ sin w/2 Y
42+ in yo/d)* 2
Parzen ( jos ®) (s1.n ye ) 1 —f‘lz (1 - m>, Osl=<2)
v sin w/2 ¥ Y 2
ll\?
2(1—7 , %S|T|S'y
Hamming 1D (o) + 1D (w - E) 1 (l + cos 2
27" 477 ¥ 2 v
1
+ i D,(m + g) , where
. 41
Do) = sin (¥ + 2o

sin w/2

quantity vy has been chosen so that 8, = vy in (6.55). The frequency windows are
shown graphically in Figure 6.1. For these windows, we have

2.7 —
Bartlett: M(y)= 278 , W(y)=0.67y
Y

12

Parzen: M(y)= 7 W(y) =0.54v (6.57)
m? —
Hamming: M(y)= ﬁ ,  W(y)=0.75y

The expressions are asymptotic for large y but are good approximations for y = 5.
See also Problem 6T.1 for a further discussion of how to scale windows.

W,y( £) /"\I

Figure 6.1 Some common frequency : ; .
windows. Solid line: Parzen; dashed line: -2 0 m/2 £
Hamming; dotted line: Bartlett, y = 5. (rad/s)
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Asymptotic Properties of the Smoothed Estimate

The estimate (6.46) has been studied in several treatments of spectral analysis.
See, for example, Chapter 10 of Jenkins and Watts (1968) or Chapter 6 of Brillinger
(1981). Results that are asymptotic in both N and v can be derived as follows (see
Appendix 6A). Consider the estimate (6.46), and suppose that the true system
obeys the assumptions of Lemma 6.1. We then have

Bias
EGy(e™) — Goe®) = M(y)" [% Gi(e™) + Gile™) 28 (6.58)
+0(G) + OUYN) |

Prime and double prime denote differentiation with respect to w, once and twice,
respectively.
Variance

EIGu(e") ~ EGN( = 3 W) go + oTWIN) (659

N—>»,y/N—0

We repeat that expectation here is with respect to the noise sequence {v ()} and that
the input is supposed to be a deterministic quasi-stationary signal.

Let us use the asymptotic expressions to evaluate the mean-square error
(MSE):

EIGu(e™) - Gie) ~ MOR@E+ T HS (660
Here
R() = 1 Gie™) + Gile™) (6.61)

Some additional results can also be shown (see Brillinger, 1981, Chapter 6,
and Problems 6D.3 and 6D .4).

@ The estimates Re Gy(e™) and Im Gy(e™) are asymptotically uncorrelated and

each have a variance equal to half that in (6.59). (6.62)
@ The estimates Gy(e™) at different frequencies are asymptotically un-
correlated. (6.63)

@ The estimates Re GN(e“*), Im GN(e‘”*),k =1,2,...,M, at an arbitrary col-
lection of frequencies are asymptotically jointly normal distributed with
means and covariances given by (6.58) to (6.63). (6.64)

@ For a translation to properties of |Gy(e™)|, arg G (e™), see Problem 9G. 1.
From (6.60) we see that a desired property of the window is that both M and W

should be small. We may also calculate the value of the width parameter vy that
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minimizes the MSE. Suppose that both y and N tend to infinity and /N tends to
zero, so that the asymptotic expressions are applicable. Suppose also that (6.57)
holds with M (y) = M /vy’ and W(y) = y- W Then (6.60) gives

_ (M 2|R ()P D, (w)\¥ L NUS
= ( W, (a) ) N (6.65)

This value can of course not be realized by the user, since the constant contains
several unknown quantities. We note, however, that in any case it increases like
N, and it should, in principle, be allowed to be frequency dependent. The fre-
quency window consequently should get more narrow when more data are avail-
able, which is a very natural result.

The optimal choice of vy leads to a mean-square error that decays like

MSE ~ C-N~% (6.66)

In practical use the trade-off (6.65) and (6.66) cannot be reached in formal terms.
Instead, a typical procedure would be to start by taking y = N /20 (see Table 6.1)
and then compute and plot the corresponding estimates Gy (e™) for various values
of y. As yis increased, more and more details of the estimate will appear. These will
be due to decreased bias (true resonance peaks appearing more clearly and the
like), as well as to increased variance (spurious, random peaks). The procedure will
be stopped when the user feels that the emerging details are predominately spuri-
ous.

opt

An Example

Example 6.1
The system

yO - 15¢ -1)+07y( — 2)=u(@t —1) + 0.5u(t —2) +e(?) (6.67)

where {e (¢)} is white noise with variance 1 was simulated with the input as a PRBS signal (see
Section 14.3) over 1000 samples. Part of the resulting data record is shown in Figure 6.2. The
corresponding ETFE is shown in Figure 6.3. An estimate Gy (e*) was formed using (6.46),
with W,(£) being a Parzen window with various values of . Figure 6.4 shows the results for
y = 10, 50, and 200. Here y = 50 appears to be a reasonable choice of window size. W

Another Way of Smoothing the ETFE (*)

The guiding idea behind the estimate (6.46) is that the ETFEs at neighboring
frequencies are asymptotically uncorrelated, and that hence the variance could be
reduced by averaging over these. The ETFEs obtained over different data sets will
also provide uncorrelated estimates, and another approach would be to form aver-
ages over these. Thus, split the data set Z" into M batches, each containing R data
(N = R - M). Then form the ETFE corresponding to the kth batch:

GP(e™), k=1,2.... M (6.68)
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+20

-20 u T T T
+1 4
0 -
-1 Figure 6.2 The simulated data from
0 30 60 0 ' (6.67)
[Gte)|
100
10 -
1 -
0.1
Figure 6.3 The amplitude plot of ETFE
K T w based on the data in Figure 6.2. Smooth
.01 0.1 ! {rad/s) line: true amplitude plot of (6.67).

The estimate can then be formed as a direct average
a . 1 L .
Gule™) = 34 > G (e™) (6.69)
k=1
or one that is weighted according to the inverse variances:

A S pi(w)- G (e)
GN(eiu) k=1

] (6.70)
El B (w)
with

BY () = |UR () (6.71)
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being the periodogram of the kth subbatch. The inverse variance of G® (e™) is
B (w)/ P, (w), but the factor P, (w) cancels when (6.70) is formed.

An advantage with the estimate (6.70) is that the fast Fourier transform (FFT)
can be efficiently used when Z" can be decomposed so that R is a power of 2.
Compare Problem 6G.4.

6.5 ESTIMATING THE DISTURBANCE SPECTRUM (*)
Estimating Spectra

So far we have described how to estimate G, in a relationship (6.1):
y(t) = Go(qu(®) + v(1) . (6.72)

We shall now turn to the problem of estimating the spectrum of {v(¢)}, ®,(w). Had
the disturbances v (t) been available for direct measurement, we could have used
(6.48):

(o) = | e - wlwords (6.73)

Here W,( -) is a frequency window of the kind described earlier.
It is entirely analogous to the analysis of the previous section to calculate the
properties of (6.73). We have:

Bias
- 1
E®) (0) = @,(w) = 3M(y) - /() + O(Ci(¥)) + O(1/ VN)  (6.74)
y—> —
Variance
Var & () = —W—ISY—) - Pi(w) + 0(13/N) , o *0,=mw (6.75)
Moreover, estimates at different frequencies are asymptotically uncorrelated.

The Residual Spectrum

Now the v(¢) in (6.72) are not directly measurable. However, given an esti-
mate Gy of the transfer function, we may replace v in the preceding expression by

(1) = y(&) = Gul(@u() (6.76)

which gives the estimate

&) = [ Wik - 0lYu(® - GueIUn(OF de  (677)
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If Gy(e®) is formed using (6.46) with the same window W,( - ), this expression can be
rearranged as follows [using (6.48) to (6.51)]:

f_: W (& — o)|Yi(®)P dt + f W& = 0)|Un(®)P|Gn(e®)] dE
~2Re [ Wi(E — 0)Ci(e Un(§ Tl d
~ [ Wit - P de + [Ga (eI [ Wit~ IUN®P e

~2Re Ga(e™) [ W& — o) Un(OTHlE) d

=&V |<i)ﬁ(w)|2 & _ (I)ﬁ,(
= @) (w)+m @/ (w) — 2R () &Y, (o)

Here the approximate equality follows from replacing the smooth function Gy (e*)
over the small interval around & = w with its value at w. Hence we have

|9 (@)f?

B (w) = &) (w) - )

(6.78)

Asymptotically, as N — ® and y— =, so that Gy(e™)— Gy(e™) according to
(6.60), we find that the estimate (6.77) tends to (6.73). The asymptotic properties
(6.74) and (6.75) will also hold for (6.77) and (6.78). In addition to the properties
already listed, we may note that the estimates &) (w) are asymptotlcally un-
correlated with Gy(e®). Moreover, &) (v ), Gn(e™),k = 1,2,...,r, are asymp-
totically jointly normal random variables with mean and covariances given by (6.58)
to (6.64) and (6.74) to (6.75). A detailed account of the asymptotic theory is given in
Chapter 6 of Brillinger (1981).

Coherency Spectrum
Denote
) _ [ PN (w)f
S = NG ) @) ©7)
Then

B (w) = DY (@)[1 - (& ()] (6.80)

The function k,, (w) is called the coherency spectrum (between y and u) and can be
viewed as the (frequency dependent) correlation coefficient between the input and
output sequences. If this coefficient is 1 at a certain frequency, then there is perfect
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correlation between input and output at that frequency. There is consequently no
noise interfering at that frequency, which is confirmed by (6.80).

6.6 SUMMARY

In this chapter we have shown how simple techniques of transient and frequency
response can give valuable insight into the properties of linear systems. We have
introduced the empirical transfer-function estimate (ETFE)

2 o YN((.O)
Gu(e™) =gy (6.81)

based on data over the interval 1 =¢ < N. Here
1 < .
Y, e, U, =—== > u(t)e™
(@) = WEy() V@)= 2 u()
The ETFE has the property (see Lemma 6.1) that it is asymptotically unbiased, but

has a variance of ®, (w)/|Un (o).
We showed how smoothing the ETFE leads to the spectral analysis estimate

[ W& - lun@P Snte®rae

Gy(e™)="—"— (6.82)
[ e~ olt®Pas
A corresponding estimate of the noise spectrum is
$(w) = [ W& - 0)INE) - Gu(eUn®P e (6.83)

The properties of these estimates were summarized in (6.58) to (6.64) and (6.74) to
(6.75).

These properties depend on the parameter y, which describes the width of the
associated frequency window W, . A narrow such window (large <) gives small bias
but high variance for the estimate, while the converse is true for wide windows.

6.7 BIBLIOGRAPHY

Section 6.1: Wellstead (1981) gives a general survey of nonparametric
methods for system identification. A survey of transient response methods is given
in Rake (1980). Several ways of determining numerical characteristics from step
responses are discussed in Schwarze (1964). Correlation techniques are surveyed in
Godfrey (1980).
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Section 6.2: Frequency analysis is a classical identification method that is
described in many textbooks on control. For detailed treatments, see Rake (1980)
and Astrém (1975), which also contains several interesting examples.

Section 6.3:  General Fourier techniques are glso discussed in Rake (1980).
The term ““empirical transfer function estimate” for G is introduced in this chapter,
but the estimate as such is well known.

Sections 6.4 and 6.5: Spectral analysis is a standard subject in textbooks
on time series. See, for example, Grenander and Rosenblatt (1957) (Chapters 4 to
6), T. W. Anderson (1971) (Chapter 9), and Hannan (1970) (Chapter V). These
texts deal primarily with estimation of power (auto-) spectra. Among specific treat-
ments of frequency-domain techniques, including estimation of transfer functions,
we note Brillinger (1981) for a thorough analytic study, Jenkins and Watts (1968)
for a more leisurely discussion of both statistical properties and application aspects,
and Bendat and Piersol (1980) for an application-oriented approach. Another
extensive treatment is Priestley (1981). Overviews of different frequency-domain
techniques are given in Brillinger and Krishnaiah (1983), and a control-oriented
survey is given by Godfrey (1980). The treatment given here is based on Ljung
(1985a). The first reference to the idea of smoothing the periodogram to obtain a
better spectral estimate appears to be Daniell (1946). A comparative discussion of
windows for spectral analysis is given in Gecklini and Yavuz (1978) and Papoulis
(1973).

Estimation of transfer functions by spectral analysis has been widely used: in
e.g. econometrics (Granger, 1964); geophysics (Robinson, 1967); industrial appli-
cations (Gustavsson, 1975); and many other areas. The literature is abundant with
examples.

In addition to direct frequency-domain methods for estimating spectra, many
efficient methods are based on parametric fit, such as those to be discussed in the
following chapter. So called maximum entropy methods (MEM) have found wide
use in signal-processing applications. See Burg (1967) for the first idea and Kay and
Marple (1981) for a comparative survey of different approaches.

6.8 PROBLEMS

6G.1. Consider the system
y(©) = Go(qu(?) + v(1)
controlled by the regulator
u®) = —F(qy(®) + r@®)

where () is an external reference signal. r and v are independent and their spectra are
P, (w) and @, (w), respectively. The usual spectral analysis estimate of G, is given in
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6G.4.
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(6.51) as well as (6.46). Show that as N and v tend to infinity then G (e™) will converge
to
Go(e™)D, (0) — F(e )P, (w)

@, (w) + |F(e™) v (w)
What happens in the two special cases ®, =0and F = 0, respectively? Hint: Compare
Problem 2E.5.

G.(e™) =

. Prefiltering. Prefilter inputs and outputs:

ur(t) = Lu(Qu(®),  yr() = Ly(q)y()
If (6.32) holds, then the filtered variables obey

yr(t) = Gi(@ur(?) + ve(f)

L,(9
5(q) = ——Golg), vr(®) = L,(@v()

L.(q)
Apply spectral analysis to ur, yr, thus forming an estimate G%(e™). The estimate of
the original transfer function then is

o . L€ Ap. .

GN(e"") = —TGN e"")

Ly(e™)

Determine the asymptotic properties of Gn(e).and discuss how L, and L, can be
chosen for smailest MSE (cf. Ljung, 1985a).

. In Figure 6.3 the amplitude of the ETFE appears to be systematically larger than the

true amplitude, despite the fact that the ETFE is unbiased according to Lemma
6.1. However, G being an unbiased estimate of G, does not imply that |G| is an
unbiased estimate of |Gy|. In fact, prove that

D, (w)
|Un ()
asymptotically for large N, under the assumptions of Lemma 6.1.
The Cooley-~Tukey spectral estimate for a process {v(¢)} is defined as

E|Gn(e)P = |Go(e™)P +

. 1 4
B () =3, 2 VR@I
k=1
where |V ¥ (0)[* is the periodogram estimate of the kth subbatch of data:
13 ,
VP =—= 2 v((k —1)-R + e ™
@ = 2 v -D-R+0

See Cooley and Tukey (1965) or Hannan (1970), Chapter V. The cross-spectral esti-
mate is defined analogously. This estimate has the advantage that the FFT (fast Fourier

transform) can be applied (most efficiently if R is a power of 2). Show that the estimate
(6.70) is the ratio of two appropriate Cooley-Tukey spectral estimates.

. “Tapers” or “faders.” The bias term ps(N) in (6.36) can be reduced if tapering is

introduced: Let V { (w) be defined by

Vi () = S hev(e)-e—

t=1
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6E.1.

6E.2.

6E.3.

6T.1.

where {h,}{ is a sequence of numbers (a tapering function) such that
q pering

N
DR =1
=1

Let
N
Hny(w) = 2, he ™

t=1

Show that, under the conditions of Lemma 6.2,
EVP@F = [ |y ~ D o.(@)d

Show that our standard periodogram estimate, which uses 4, = 1/V/N, gives

sinNu)/Z]2

1
Hy(w)f = N[ sinw/2

Other tapering coefficients (or “faders” or “‘convergence factors”) may give functions
|Hy(w)[* that are more *“8-function like” than in preceding equation (see, e.g., Table
6.1). The tapered periodogram can of course also be used to obtain smoothed spectra.
They will typically lead to decreased bias and (slightly) increased variance (Brillinger,
1981, Theorem 5.2.3 and Section 5.8).

Determine an estimate for Go(e™”) based on the impulse-response estimates (6.4).
Show that this estimate coincides with the ETFE (6.24).

Consider the system
y(#) = Go(qJu(t) + v(2)
This system is controlled by output proportional feedback

u(t) = —Ky(r)

Let the ETFE éN(ei”) be computed in the straightforward way (6.24). What will this
estimate be? Compare with Lemma 6.1,

Let we, k =1,..., M, be independent random variables, all with mean value 1 and
variances E (w, — 1)* = \.. Consider

M
w= 2 o Wi
k=1

Determine a,, k =1, ..., M, so that

(@) Ew = 1.

(b) E(w — 1)?is minimized.

A general approach to treat the relationships between the scaling parameter vy and the
lag and frequency windows w.(1) and W,(w) [see (6.53)] can be given as follows.
Choose an even function w(x) such that w(0) = 1 and w(x) = 0, |x| > 1, with Fourier
transform

00

WO = j_w w(x)e " dx
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6T.2.

6D.1.
6D.2.

6D.3.
6D.4.

166

W =2n f_ W2(\)d\

M= j_ N W)\

Then define the lag window

wy(1) = w(r/7)

This gives a frequency window

W)= 3 wire ™

=y
Show that, for large vy,
@) Wi(w)~v W(y-w)
(b) 1‘_4(7) = {4_/12
© WH)=W-y
where M (y) and W(y) are defined by (6.56). Moreover, compute and compare W,(»)
and v- W(y- ) for w(x) = 1 — |x|,|x| =1 (the Bartlett window). [Compare (6.57).
See also Hannan (1970), Section V.4.]

Let {v(¢)} be a stationary stochastic process with zero mean value and covariance
function R, (7), such that

2 R ()| <
Let
1 N
Sv== 2 av(), |a|l=C
NZ,

Show that

for some constant C;.
Prove (6.52) with the proper interpretation of values outside the interval 1 <¢ = N.

Prove a relaxed version of Lemma 6.2 with |p. (N)| = C/V/N by a direct application of
Theorem 2.1 and the propetties of periodograms of white noise.

Prove (6.63) by using expressions analogous to (6A.3) and (6A.4).

Prove (6.62) by using (6.63) and
i o G+ Ge™
ReG(e“")=_____——(e ) ZG(e )
o G = Gl
mem - S 6™
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6S.1. Write a MACRO
[GH, PHIVH] = SPA(y, u, GAMMA)

that implements (6.46) and (6.77). Pick a particular window in Table 6.1 with
v = GAMMA. The easiest implementation is to use (6.9) and (6.10) for |7| < v, then
(6.55) [and its counterparts for & (), P, (w)], and finally (6.51) and (6.78). Return
GH and PHIVH computed at predetermined frequencies as vectors.

APPENDIX 6A: DERIVATION OF THE ASYMPTOTIC PROPERTIES
OF THE SPECTRAL ANALYSIS ESTIMATE

Consider the transfer function estimate (6.46). In this appendix we shall derive the

asymptotic properties (6.58) and (6.59). In order not to get too technical, some

elements of the derivation will be kept heuristic. Recall that {u(¢)} here is regarded

as a deterministic quast-stationary sequence, and, hence, such that (6.47) holds.
We then have

[ W UG + V) Uy®) d
EGy(e) = ==

| e - wo)lun(OF d
- (6A.1)

[" W&~ on@. @G a

-

[ Wit - 000 de

using first Lemma 6.1 and then (6.47), neglecting the decaying term p,(N).
Now, expanding in Taylor series (prime denoting differentiation with respect
to ),

Go(e®) = Goe™) + (€ — wo)Ga(e™) + 3(E — wo )’ Gie™)
D, (§) =~ Pulwo) + (€ — 00)Pi(wo) + (€ — w0)* Pi(wy)
and noting that, according to (6.56a),

|7 (&= w0) W& — wo)d = 0

[ €= w0y i - w0z = M)

we find that the numerator of (6A.1) is approximately
Go(e™)D,(030) + M(Y)[3D. G, + 3G ®, + D, G} ]
and the denominator

D, (wo) + 3M (Y)[ @]
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where we neglect effects that are of order C;(ty) [an order of magnitude smaller than
M(v) as y— ; see (6.56b)]. Equation (6A.1) thus gives
E Gy(e™) = Gy(e™) + M (Y)[zG (e™) + Gy(e “"");I: ((wO))
which is (6.58).
For the variance expression, we first have from (6.28) that

A A |7 W& = w0) U (@) PLVA(®)/ Ur (B
G(e™) — EGy(e™)~ ==

_ (6A.2)
RIS IACRE

Let us study the numerator of this expression. We write this, approximately, as a
Riemann sum [see (6.41a); we could have kept it discrete all along]:

f Wy (& — o) Un(E)Va(®)dE =~ Ay

s 2w 2wk — (2mwk 2wk
== W( Uy V( ) 6A.3
N, (ENIZ)Jrl N ) ( ) N ( )

We have, with summation from 1 — N/2 to N/2,

_ 42 2 _
EANAy =%22m<%k = mo)M(zﬂ - wO)UN(‘Z‘?‘]E)
k

N N
< oL ono
S ) SCSIONCS

using (6.31) and neglecting the term p,(V).
Returning to the integral form, we thus have, using (6.47)

EavAy ~ 22 [ Wil - a)®, 0,08 ~ F WO, (00)0, ()

using (6.56) and the fact that, for large vy, W,(£) is concentrated around § = 0.
The denominator of (6A.2) approximately equals ®, (v, ) for the same reason.
We thus find that
UN)W (V)P (w0 )P (o)
[®.(w0)T

Var[Gy(e™)] =

and (6.59) has been established. B
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PARAMETER ESTIMATION METHODS

Suppose a set of candidate models has been selected, and it is parametrized as a
model structure (see Section 4.5), using a parameter vector 6. The search for the
best model within the set then becomes a problem of determining or estimating 6.
There are many different ways of organizing such a search and also different views
on what one should search for. In the present chapter we shall concentrate on the
latter aspect: what should be meant by a “good model”’? Computational issues (i.e.,
how to organize the actual search) will be dealt with in Chapters 10 and 11. The
evaluation of the properties of the models that result under various conditions and
using different methods is carried out in Chapters 8 and 9. In Chapter 15 we return
to the estimation methods, and give a more user-oriented summary of recom-
mended procedures.

7.1 GUIDING PRINCIPLES BEHIND PARAMETER ESTIMATION
METHODS

Parameter Estimation Methods

We are now in the situation that we have selected a certain model structure M,
with particular models M(0) parametrized using the parameter vector 6 € D, C
R? The set of models thus defined consequently is

M* = {M(6)|6 € Dy} (7.1)
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Recall that each model represents a way of predicting future outputs. The predictor
could be a linear filter, as discussed in Chapter 4:

M(6): §(¢]6) = Wi(q,0)y (1) + Wilg,0)u(?) (7.2)

This could correspond to one-step-ahead prediction for an underlying system de-
scription

y(t) = G(q,0)u(?) + H(q,0)e() (7.3)

in which case
W,(q,0) =[1 — H'(q,0)], Wuq,6)=H(q,6)G(q,0) (7.4)

but it could also be arrived at from other considerations.
The predictor could also be a nonlinear filter, as discussed in Chapter 5, in
which case we write it as a general function of past data Z'~ ":

M(0): $(t|0) =g(t, Z'7"; 0) (7.5)

The model M(6) may also contain (model) assumptions about the character of the
associated prediction errors, such as their variances (A\(8)) or their probability
distribution (PDFf, (x, 8)).

We are also in the situation that we have collected, or are about to collect, a
batch of data from the system:

ZN¥=[y(D),u(1),y(2),u(),...,y(N),u(N)] (7.6)

The problem we are faced with is to decide upon how to use the information
contained in Z" to select a proper value 6y of the parameter vector, and hence a
proper member M(6y) in the set M*. Formally speaking, we have to determine a
mapping from the data Z" to the set Dy :

ZN— Gy € Dy (7.7)

Such a mapping is a parameter estimation method.

Evaluating the Candidate Models

We are looking for a test by which the different models’ ability to “describe”
the observed data can be evaluated. We have stressed that the essence of a model is
its prediction aspect, and we shall also judge its performance in this respect. Thus
let the prediction error given by a certain model M(6+) be given by

e(t, 0x) = y (1) = $(¢]0+) (7.8)

When the data set Z" is known, these errors can be computed for ¢t =1,2,...,N.

A “good” model, we say, is one that is good at predicting, that is, one that
produces small prediction errors when applied to the observed data. Note that there
is considerable flexibility in selecting various predictor functions, and this gives a
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corresponding freedom in defining “good” models in terms of prediction per-
formance. A guiding principle for parameter estimation thus is:

Based on Z* we can compute the prediction error e(t, 0) using (7.8). At time ¢ = N,
select Oy so that the prediction errors e(t, 6v )t =1,2,...,N, become as small as
possible. 7.9

The question is how to qualify what “small” should mean. In this chapter we
shall describe two such approaches One is to form a scalar-valued norm or criterion
function that measures the size of . This approach is dealt with in Sections 7.2 to
7.4. Another approach is to demand that e(z, 6y ) be uncorrelated with a given data
sequence. This corresponds to requiring that certain “projections” of (s, 6y ) are
zero and is further discussed in Sections 7.5 and 7.6.

7.2 MINIMIZING PREDICTION ERRORS

The prediction-error sequence in (7.8) can be seen as a vector in R". The “size” of
this vector could be measured using any norm in R", quadratic or nonquadratic.
This leaves a substantial amount of choices. We shall restrict the freedom some-
what by only considering the following way of evaluating “how large” the
prediction-error sequence is: Let the prediction-error sequence be filtered through
a stable linear filter L(q):

er(t, ) = L(q)e(t, 9), l1=t=N (7.10)

Then use the following norm:
N
Va8, ZY) = % S e(ex(t, 0)) (7.11)
t=1

where £€( ) is a scalar-valued (typically positive) function.

The function Vi(0, Z") is, for given Z¥, a well-defined scalar-valued function
of the model parameter 6. It is a natural measure of the validity of the model M(6).
The estimate y is then defined by minimization of (7.11):

by = 6x(Z™) = arg min Va(0,Z%) (7.12)
0€Dy

Here arg min means “the minimizing argument of the function.” If the minimum is
not unique, we let arg mjin denote the set of minimizing arguments. The mapping
(7.7) is thus defined implicitly by (7.12).

This way of estimating 6 contains many well-known and much used proce-
dures. We shall use the general term prediction-error identification methods (PEM)
for the family of approaches that corresponds to (7.12). Particular methods, with
specific “names” attached to themselves, are obtained as special cases of (7.12),
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depending on the choice of €( - ), the choice of prefilter L( -), the choice of model
structure, and, in some cases, the choice of method by which the minimization is
realized. We shall give particular attention to two especially well known members in
the family (7.12) in the subsequent two sections. First, however, let us discuss some
aspects on the choices of L(g) and €( - ) in (7.10) and (7.11). See also Section 15.2.

Choiceof L

The effect of the filter L is to allow extra freedom in dealing with non-
momentary properties of the prediction errors. Clearly, if the predictor is linear and
time invariant, and y and u are scalars, then the result of filtering ¢ is the same as
first filtering the input—output data and then applying the predictors.

The effect of L is best understood in a frequency-domain interpretation of
(7.12), and a full discussion will be postponed to Chapter 13. It is clear, however,
that by the use of L effects of high-frequency disturbances, not essential to the
modeling problem, or slow drift terms and the like, can be removed. It also seems
reasonable that certain properties of the models may be enhanced or suppressed by
a properly selected L. L thus acts like frequency weighting.

The following particular aspect of the filtering (7.10) should be noted. If a
model (7.3) is used, the filtered error ex(¢, 9) is given by

er(t, 8) = L(q)e(t, 0) = [L(9)H(q, )] '[y (1) — G(g, )u(®)]  (7.13)
The effect of prefiltering is thus identical to changing the noise model from H(q, 0) to

When we describe and analyze methods that employ general noise models in
linear systems, we shall usually confine ourselves to L(g) = 1, since the option of
prefiltering is taken care of by the freedom in selecting H (g, 8). A discussion of the
use and effects of L (q) in practical terms will be given in Chapter 13.

Cholice of ¢

For the choice of €( - ), a first candidate would be a quadratic norm:
£(e) = 3¢? (7.15)

and this is indeed a standard choice, which is convenient both for computation and
analysis. Questions of robustness against bad data may, however, warrant other
norms, which we shall discuss in some detail in Section 15.2. One may also conceive
situations where the ‘“best’”” norm is not known beforehand so that it is reasonable to
parametrize the norm itself:

€(s, 6) (7.16)
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Often the parametrization of the norm is then independent of the model
parametrization:

0=(): €t 0),0) = €(c(t, 6'),00) (7.17)

An exception to this case is given in Problem 7E.4.
Time-varying Norms

It may happen that measurements at different time instants are considered to
be of varying reliability. The reason may be that the degree of noise corruption
changes or that certain measurements are less representative for the system’s prop-
erties. In such cases we are motivated to let the norm ¢ be time varying:

Vil6,2% = f) e(e(t, 0), 6, 9) (7.18)

In this way less reliable measurements can be associated with less weight in the
criterion.

We shall frequently work with a criterion where the weighting is made ex-
plicitly by a weighting function B(N, #):

Vi(6,Z") = ﬁ B(N, H(e(t, 6), 0) (7.19)

For fixed N, the N-dependence of B(N, ¢) is of course immaterial. However, when
estimates 6y for different N are compared, as for example in recursive identification
(see Chapter 11), it becomes interesting to discuss how B(N, ©) varies with N. We
shall return to this issue in Section 11.2.

Frequency-domain Interpretation of Quadratic
Prediction-error Criteria for Linear Time-invariant Models

Let us consider the quadratic criterion error (7.12) and (7.15) for the standard
linear model (7.3)
N
V(6,2 =~ 3 1¥(1,0)
=1 (7.20)
e(1,0) = H™'(q,0)[y(©) - G(q,0)u(r)]

Let Ex(2mk/N,6),k =0,1,...,N — 1, be the DFT of £(1,0), = 1,2, . .., N

N
Ex(2wk/N,6) = %\f > e(t,0)e kN
t=1

Then, by Parseval’s relation (2.44),

N-1
V0.2 = % 2 |Ev@mkiN, 6)F (7.21)

Z|=
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Now let
w(t, 0) = G(gq, O)u(t)
Then the DFT of w(t, ) is, according to Theorem 2.1,
Wi, 8) = G(e™, 0)Un(w) + Ry(w)
with

Ry(@)] ==

The DFT of s (¢, ) = y(t) — w(¢, 0) then is
Sn(w, 8) = Yy(w) = G(e*, )U(w) — Ry(w)
Finally,
e(t, 0) = H™'(q, 8)s(z, 0)
has the DFT, again using Theorem 2.1,
En(w) = H'(e*, 6)Sn(w, 6) + Ry(w)
with

Rn@)| =7

Inserting this into (7.21) gives

Vn(0,2ZN) = %]E:%V‘I(CZMW, 0)| ) Yw(2wk /N) — G(e*™™*™, 0)Uy(2mk /N)]> + Ry
with |Ry| = C / VN or, using the definition of the ETFE Gy in (6.24),

V(0,2 =3 3 2 { [Gule™™) ~ G(e™, ) Oy(2mk /N, 0)+ Ry | (1.22)

with | e
_ _|Un(w)
QN(“), 9) = |H(ei...’ 0)12

First notice that, apart from the remainder term Ry, the expression (7.22) coincides
with the weighted least-squares criterion for a model:

éN(e2wik/N) - G(ez-m‘k/N’ 0) + V(k) (724)

Compare with (I1.96) and (I1.97). According to Lemma 6.1, the variance of v(k) is,
asymptotically, ®,(2wk /N)/|Uy(2wk / N)J?, so the weighting coefficient Qy(w, 8)
is the inverse variance, which is optimal for linear regressions, according to (II.65).
In (7.23) the unknown noise spectrum ®,(w) is replaced by the model noise
spectrum |H(e™, 8)|*. Consequently, the prediction-error methods can be seen as
methods of fitting the ETFE to the model transfer function with a weighted norm,

(7.23)
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corresponding to the model signal-to-noise ratio at the frequency in question. For
notational reasons, it is instructive to rewrite the sum (7.22) approximately as an
integral:

V(6,2 ~ 21—“ L%|é~(e'”) — G(e"™ 0)Qulw 6) dw  (7.25)

The shift of integration interval from (0, 2m) to (—m, ©) is possible since the inte-
grand is periodic.

With this interpretation we have described the prediction-error estimate as an
alternative way of smoothing the ETFE, showing a strong conceptual relationship
to the spectral analysis methods of Section 6.4. See Problem 7G.2 for a direct tie.

When we specialize to the case of a time series [no input and G(gq, 6) = 0], the
criterion (7.25) takes the form
2

L[ do (7.26)

1 Yov(w)
2mJ_,

H(e™,0)
Such parametric estimators of spectra are known as ‘“Whittle-type estimators,”
after Whittle (1951).

VN(O,ZN) =

Multivariable Systems (*)

For multioutput systems, the counterpart of the quadratic criterion is
€(s) =3eTA e (7.27)

for some symmetric, positive semidefinite p X p matrix A that weighs together the
relative importance of the components of ¢.

One might discuss what is the best choice of norm A. We shall do that in some
detail in Section 15.2. Here we only remark that, just as in (7.16), the parameter
vector 6 could be extended to include components of A, and the function € will then
be an appropriate function of 6.

As a variant of the criterion (7.11), where a scalar €(¢) is formed for each ¢, we
could first form the p X p matrix

N

On(8,ZY) =%2 e(t, 0)e™(t, 0) (7.28)

t=1

and let the criterion be a scalar-valued function of this matrix:

VN(09ZN) =h(QN(072N)) (729)
The criterion (7.27) is then obtained by
h(Q) = $tr(QA™) (7.30)
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7.3 LINEAR REGRESSIONS AND THE LEAST-SQUARES METHOD

Linear Regressions

We found in both Sections 4.2 and 5.2 that linear regression model structures
are very useful in describing basic linear and nonlinear systems. The linear re-
gression employs a predictor (5.34)

7(t16) = ¢"(1)8 + p(®) (7.31)

that is linear in 6. Here ¢ is the vector of regressors, the regression vector. Recall
that for the ARX structure (4.7) we have

o) =[-y(t -1 -yt —-2)...~y(t —n)ut — 1)...u(t — n)|" (7.32)

In (7.31), u(¢) is a known data-dependent vector. For notational simplicity we shall
take p(f) = 0 in the remainder of this section; it is quite straightforward to include
it. See Problem 7D.1.

Linear regression forms a standard topic in statistics. The reader could consult
Appendix II for a refresher of basic properties. The present section can, however,
be read independently of Appendix II.

Least-squares Criterion

With (7.31) the prediction error becomes
e(t, 6) = y() — ¢7(1)8
and the criterion function resulting from (7.10) and (7.11), with L(q) = 1 and
€(e) =3¢, is
1 N
Vi(8,Z") = 5 23y (1) — ¢"(1)6F (7.33)
t=1

This is the least-squares criterion for the linear regression (7.31). The unique feature
of this criterion, developed from the linear parametrization and the quadratic
criterion, is that it is a quadratic function in 9. Therefore, it can be minimized
analytically, which gives, provided the indicated inverse exists,

6% = arg min V3(0, 2") = [ﬁZ ‘p(,)‘pr(,)]' N oy© (134

the least-squares estimate (LSE) (see Problem 7D.2).

Introduce the d X d matrix
N

1
R(N) = 21 *()e" (1) (7.35)
and the d-dimensional column vector
1 N
fIN) =5 2 ey (®) (7.36)
t=1
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In the case (7.32), ¢(¢) contains lagged input and output variables, and the entries of
the quantities (7.35) and (7.36) will be of the form

1< : : .
RV =g 2y =iy =j) 1=ij=n,

and similar sums of u(t — r)-u(t — s)oru(t — r)-y(¢t — s) for the other entries of
R(N). That is, they will consist of estimates of the covariance functions of { y (¢)} and
{u(2)}. The LSE can thus be computed using only such estimates and is therefore
related to correlation analysis, as described in Section 6.1.

Properties of the LSE

The least-squares method is a special case of the prediction-error identifica-
tion method (7.12). An analysis of its properties is therefore contained in the
general treatment in Chapters 8 and 9. It is, however, useful to include a heuristic

investigation of the LSE at this point.
Suppose that the observed data actually have been generated by

y(8) = @T(1)80 + vo(2) (7.37)

for some sequence {vo(f)}. We may think of 6, as a ““true value” of the parameter
vector. Inserting (7.37) into (7.34) gives

=[RMN]"' 5 2 *(Ole"(1)80 + vo(r)]

=6+ [RWI'% Z @(H)vo(t) (7.38)
Desired properties of #%° would be that

1. Itis close to 6.
2. It converges to 6, as N tends to infinity.

We first note that if vo(t) in (7.37) is small compared to ¢(¢) then the error term
RV 2 OZ0

will be small, and thus §5° will be close to §,. To investigate what happens when N

tends to infinity, it is convenient to assume that {vo()} is a realization of a stationary

stochastic process and to specialize to (7.32). Assume that the input is quasi-
stationary so that sums like

RY() = %El u(Ou(t = 1)— Ry(v) = Eu(t — 1yu(t)
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converge when N tends to infinity. Then the matrix R(N) (which is made up from
such sums and related ones) will converge (with probability 1):

R(N)>R*, (= Ee()¢'(t)) asN—>

Also, under weak conditions with probability 1,
N
+ 2 e —h*, (= Be(t)ve(t)) as N—>
t=1

(Compare with Theorem 2.3.) Thus
6y — 6, + (R*)'h*, as N (7.39)

provided R* is nonsingular. For the LSE to be consistent, that is, for 6y to converge
to 6, we thus have to require:

(i) R* is nonsingular. This will typically be the case, for example, if {z(¢)} and
{ve(t)} are independent and the m X m matrix, whose i, j entry is R,(i — j ), is
nonsingular. In this case the input is said to be persistently exciting of order n,
(a thorough discussion of this concept is given in Section 14.2).

(ii) A* = 0. This will be the case if either

(iia) {v¢(?)} is a sequence of independent random variables with zero mean
values (white noise). Then vy(t) does not depend on what has happened
up to time ¢ — 1, and hence E¢(t)vy(t) = 0.

or

(iib) The input sequence {u(#)} is independent of the zero-mean noise se-
quence {vo(?)} and n, = 0in (7.32). Then ¢(¢) contains only ¥ terms and
hence E ¢(t)vo(t) = 0.

When n, > 0 so that ¢(¢) contains y(k), t — n, =k =t — 1, and {vy(t)} is
not white noise, then (usually) Eve(t)e(t) # 0. This follows since ¢(¢) contains
y(t — 1), while y(t — 1) contains the term v¢(¢t — 1) that is correlated with vy(¢).
Therefore, we may expect consistency usually only in cases (iia) and (iib).

In the cases (i) and (iia) it can also be shown (see Chapter 9) that the random
variable

VN(by — 6)

converges in distribution to the normal distribution with zero mean and covariance
matrix Ao[R*]™", where ) is the variance of vy(t). Experiment design issues [e.g., the
choice of the properties of {u(¢)}] therefore deal with the problem of making R*
“large” subject to given constraints. Such issues are discussed in Chapter 14.

Weighted Least Squares

Just as in (7.18) and (7.19), the different measurements could be assigned
different weights in the least-squares criterion:
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W0, 2% = 5 3 aly() - 60T (7.40)

or
N
Vi(8,Z% = 2 BN, D[y (1) - ¢"(1)6F (7.41)
t=1
The expression for the resulting estimate is quite analogous to (7.34):
N -1 N
= Zl BN, De(t)e'(?) Z} BN, De(t)y (1) (7.42)

Mulitivariable Case (*)

If the output y(¢) is a p-vector and the norm (7.27) is used, the LS criterion
takes the form

1 N
V(0,2 =5 23y () ~ €01 A7 [y() - ¢"(1)6] (7.43)
This gives the estimate
_ |1 N I I
=N 2 @A™ "(0) N2 e(OA y (1) (7.44)
t=1 t=1
In case we use the particular parametrization (4.53) with @ as an r X p matrix,
y(£|6) = 07 (1) (7.45)
the LS criterion becomes
N 1 d T 2
VMO,Z2%) =5 2 y () — 87 (1) (7.46)
with the estimate
. 1 N -1 1 N
6% - [ﬁ > cp(:)qaf(t)] N 2 @Oy (7.47)
t=1 t=1

(see problem 7D.2). The expression (7.47) brings out the advantages of the
structure (7.45): To determine the r X p estimate Oy, it is sufficient to invert an
r X r matrix. In (7.44) 8 is a p - r vector and the matrix inversion involves a pr X pr
matrix.

Colored Equation-error Noise (*)

The LS method has many advantages, the most important one being that the
global minimum of (7.33) can be found efficiently and unambiguously (no local
minima other than global ones exist). Its main shortcoming relates to the asymptotic
properties quoted previously: If, in a difference equation,
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y(t)+a1y(t_1)+"'+anaY(t_na)
=bu(t—1)+---+b,ult —ny)+v(@) (7.48)

the equation error v (¢) is not white noise, then the LSE will not converge to the true
values of 4; and b;. To deal with this problem, we may incorporate further modeling
of the equation error v (¢) as discussed in Section 4.2, let us say

V(1) = k(q)e(?) (7.49)

with e white and k a linear filter. Models employing (7.49) will typically take us out
from the LS environment, except in two cases, which we now discuss.

Known noise properties: If in (7.48) and (7.49) 4, and b, are unknown, but
k is a known filter (not too realistic a situation), we have

A(q)y () = B(qu(r) + x(ge(t) (7.50)
Filtering (7.50) through the filter k"!(g) gives
A(q)yr(t) = B(qur(r) + e(t) (7.51)
where
yr®) =@y @,  up(t) = x(qu(r) (7.52)

Since e is white, the LS method can be applied to (7.51) without problems. Notice
that this is equivalent to applying the filter L(g) = x!(g) in (7.10).

High-order models: Suppose that the noise v can be well described by
k(q) = /D(q) in (7.49), where D(q) is a polynomial of degree r. [That is, v(¢) is
supposed to be an autoregressive (AR) process of order r. | This gives

1
D(q)

Ay () = B(qu() + e(r) (7.53)

or
A(@)D(q)y(t) = B(q)D(q)u(?) + e(r) (7.54)

Applying the LS method to (7.54) with orders ny = n, + r and ng = n, + r gives,
since e is white, consistent estimates of AD and BD. Hence the transfer function
fromutoy,

B(q)D(q) _ B(q)
A(QD(q) A(g)

is correctly estimated. This approach was called repeated least squares in Astrom
and Eykhoff (1971). See also S6derstrom (1975b) and Stoica (1976).
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7.4 A STATISTICAL FRAMEWORK FOR PARAMETER ESTIMATION
AND THE MAXIMUM LIKELIHOOD METHOD

So far we have not appealed to any statistical arguments for the estimation of 6. In
fact, our framework of fitting models to data makes sense regardless of a stochastic
setting of the data. It is, however, useful and instructive at this point to briefly
describe basic aspects of statistical parameter estimation and relate them to our
framework.

Estimators and the Principle of Maximum Likelihood

The area of statistical inference, as well as that of system identification and
parameter estimation, deals with the problem of extracting information from obser-
vations that themselves could be unreliable. The observations are then described as
realizations of stochastic variables. Suppose that the observations are represented
by the random variable y¥ = (y(1),y(2),...,y(N)) that takes values in R". The
probability density function (PDF) of y* is supposed to be

f(o;xlaxb"'axN)=f;’(0;xN) (755)
That is,

P(yNeA)= J;NeAf:V(o;XN)dXN (7.56)

In (7.55), 6 is a d-dimensional parameter vector that describes properties of the
observed variable. These are supposed to be unknown, and the purpose of the
observation is in fact to estimate the vector @ using y". This is accomplished by an
estimator,

6(»") (7.57)

which is a function from R" to R’ If the observed value of y" is y¥, then con-
sequently the resulting estimate is 6« = §( yY).

Many such estimator functions are possible. A particular one that maximizes
the probability of the observed event is the celebrated maximum likelihood esti-
mator, introduced by Fisher (1912). It can be defined as follows: The joint proba-
bility density function for the random vector to be observed is given by (7.55). The
probability that the realization ( = observation) indeed should take the value yis
thus proportional to

£,(6; y%)

This is a deterministic function of @ once the numerical value y¥ is inserted. This
function is called the likelihood function. It reflects the “likelihood” that the ob-
served event should indeed take place. A reasonable estimator of 8 could then be to
select it so that the observed event becomes “as likely as possible.” That is, we seek

b (YY) = arg max ,(6; y¥) (7.58)
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where the maximization is performed for fixed y¥. This function is known as the
maximum likelihood estimator (MLE).

An Example

Let y(i),i = 1,...,N, be independent random variables with normal distri-
bution with (unknown) means 6, (independent of i) and (known) variances \;:

y (i) € N(6o,\) (7.59)

A common estimator of 8, is the sample mean:
. 1 &
Osm(y") = N 2 y(@) (7.60)
i=1

To calculate the MLE, we start by determining the joint PDF (7.55) for the
observations. Since the PDF for y (i) is

1 ex [_ (x: — 0)2]
ZTTX,’ p ZK,

and the y (i) are independent, we have

N

5,0;xM =11 \/21‘“—)“ expli— (x,-2—)\i0) ] (7.61)

i=1

The likelihood function is thus given by f,(6; y"). Maximizing the likelihood
function is the same as maximizing its logarithm. Thus

fu(y") = arg max logf,(6; y")
N

N N 2
= arg max{—%long - 2%log)\i - %EQM} (7.62)
8 i=1 1 §

from which we find

Relationship to the Maximum A Posteriori (MAP) Estimate

The Bayesian approach gives a related but conceptually different treatment of
the parameter estimation problem. In the Bayesian approach the parameter itself is
thought of as a random variable. Based on observations of other random variables
that are correlated with the parameter, we may infer information about its value.
Suppose that the properties of the observations can be described in terms of a
parameter vector . With a Bayesian view we thus consider 8 to be a random vector
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with a certain prior distribution (*“‘prior” means before the observations have been
made). The observations y" are obviously correlated with this 6. After the obser-
vations have been obtained, we then ask for the posterior PDF for 6. From this
posterior PDF, different estimates of 6 can be determined, for example, the value
for which the PDF attains its maximum (‘‘the most likely value’’). This is known as
the maximum a posteriori (MAP) estimate.

Suppose that the conditional PDF for y”, given 8, is

f,(8;x%) = P(y" = xM#6)
and that the prior PDF for @ is
gi(2) = P(0 =2)

[Here P(A|B) = the conditional probability of the event A given B. We also al-

lowed somewhat informal notation.] Using Bayes’s rule (I.10) and with some abuse

of notation, we thus find the posterior PDF for 6, i.e., the conditional PDF for 6,

given the observations:

P(y"6)-P(6)
P(y")

The posterior PDF as a function of @ is thus proportional to the likelihood function

multiplied by the prior PDF. Often the prior PDF has an insignificant influence.
Then the MAP estimate

Buar(y") = arg max {,(6; y") - 8+(6)} (7.65)
is close to the MLE (7.58).

P(6ly") = ~ £,(8; ") - 84(6) (7.64)

Cramér—~Rao Inequality

The quality of an estimator can be assessed by its mean-square error matrix:
P =E[6(y™) - 61[6(»™) — 61" (7.66)

Here 6, denotes the “true value” of 8, and (7.66) is evaluated under the assumption
that the PDF of y" is f, (6 y™).

We may be interested in selecting estimators that make P small. It is then
interesting to note that there is a lower limit to the values of P that can be obtained
with various unbiased estimators. This is the so called Cramér—Rao inequality:

Let 6(y") be an estimator of 6 such that E 6(y™) = 6o, where E evaluates the
mean, assuming that the PDF of y" is f,(6;y") (to hold for all values of &), and
suppose that y" may take values in a subset of RY, whose boundary does not depend
on 6. Then

E[6(y™ - 6][6(y™ — 6]" =M (7.67)
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where

M= E| Lrogs, 0% || 4 10gs, 053]

8 =69

(7.68)

= _Eﬁlogfy(o 39N

6= 68p

Since @ is a d-dimensional vector, (d/d@) logf,(6; y") is a d-dimensional column

vector and the Hessian (d%/d6?) logf,(0; y") is a d X d matrix. This matrix M is

known as the Fisher information matrix. Notice that the evaluation of M normally

requires knowledge of 6, so the exact value of M may not be available to the user.
A proof of the Cramér—Rao inequality is given in Appendix 7A.

Asymptotic Properties of the MLE

It is often difficult to exactly calculate properties of an estimator, such as
(7.66). Therefore, limiting properties as the sample size (in this case the number N)
tends to infinity are calculated instead. Classical such results for the MLE in case of
independent observations were obtained by Wald (1949) and Cramér (1946):

Suppose that the random variables {y (i)} are independent and identically distributed,
so that

N
58 x,. . xw) = T fra(6,x:)
i=1
Suppose also that the distribution of y" is given by f, (6 ; x™) for some value 6. Then
the random variable OML( y™) tends to 6, with probability 1 as N tends to infinity, and
the random variable

VN [bw(y™) = 6]

converges in distribution to the normal distribution with zero mean and covariance
matrix given by the Cramér-Rao lower bound [M ™" in (7.67) and (7.68)].

In Chapters 8 and 9 we will establish that these results also hold when the ML
estimator is applied to dynamical systems. In this sense the MLE is thus the best
possible estimator. Let it, however, also be said that the MLE sometimes has been
criticized for less good small sample properties and that there are other ways to
assess the quality of an estimator than (7.66).

Probabilistic Models of Dynamical Systems
Suppose that the models in the model structure we have chosen in Section 7.1

include both a predictor function and an assumed PDF for the associated prediction
errors, as described in Section 5.4:
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M(6): y(10) =g(, Z'"'; 6)

e(t, 8) = y(t) — y(¢|0) are independent (7.69)
and have the PDFf,(x, t; 9)

Recall that we term a model like (7.69) that includes a PDF for ¢ a (complete)
probabilistic model.

Likelihood Function for Probabilistic Models
of Dynamical Systems

We note that, according to the model (7.69), the output is generated by
y®) =gt Z""'0)+ e, 0) (7.70)

where (¢, 8) has the PDF £, (x, ¢; 8). The ]omt PDF for the observations y" (given
the deterministic sequence u") is then given by Lemma 5.1. By replacing the
dummy variables x; by the corresponding observations y (i), we obtain the likelihood
function:

£(8; ™) l:[ () — gt Z2' "% 0),1;0)

. (7.71)
H f.(e(t, 8),t; 0)
Maximizing this function is the same as maximizing
L1087, 055 =% 2 tog £, (e(c 01050 (7.72)
If we define
£(e,0,0) = —log f.(e,t;0) (7.73)
we may write
N
ba(y™) = arg 0min% S e(s(2,0),0,) (7.74)
t=1

The maximum likelihood method can thus be seen as a special case of the
prediction-error criterion (7.12).

It is worth stressing that (7.73) and (7.74) give the exact maximum likelihood
method for the posed problem. It is sometimes pointed out that the exact likelihood
function is quite complicated for time-series problems and that one has to resort to
approximations of it (e.g., Kashyap and Rao, 1976; Akaike, 1973; Dzhaparidze and
Yaglom, 1983). This is true in certain cases. The reason is that it may be difficult to
put, say, an ARMA model in the predictor form (7.69) (it will typically require
time-varying Kalman predictors). The problem is therefore related to finding the
exact predictor and is not a problem with the ML method as such. When we employ
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time-invariant predictors, we implicitly assume all previous observations to be
known [see (3.24)] and typically replace the corresponding initial values by zero.
Then it is appropriate to interpret the likelihood function as conditional w.r.t. these
values and to call the method a conditional ML method (e.g., Kashyap and Rao,
1976).

Gaussian Speclal Case

When the prediction errors are assumed to be Gaussian with zero mean values

and (t-independent) covariances A, we have

_ _ 1 1¢€2 '

€(e,0,t) = —log f.(¢,t;0) = const + 2 log A + RN (7.75)
If \ is known, then (7.75) is equivalent to the quadratic criterion (7.15). If X is
unknown, (7.75) is an example of a parameterized norm criterion (7.16). De-
pending on the underlying model structure, A may or may not be parametrized
independently of the predictor parameters. See Problem 7E.4 for an illustration of

this. Compare also Problem 7E.7.

Fisher Information Matrix and the Cramér—Rao Bound
for Dynamical Systems

Having established the log likelihood function in (7.72) for a model structure,
we can compute the information matrix (7.68). For simplicity, we then assume that

the PDF f, is known (0 independent) and time invariant. Let ¢y(e) = —logf.(e).
Hence

d sz S
2 1085 (855" = 2 £i((1,6)) - (2,6)
t=
where, as in (4.118c),
_d. d . .
U(t,0) = P4 (t|6) = — 76 e(1,0), [a d-dimensional column vector]

Also, €} is the derivative of €y(¢) w.r.t. €. To find the Fisher information matrix, we
now evaluate the expectation of

4 10, (0 y")| 5 Tog (67|
dé TR de A
at 6, under the assumption that the true PDF for y"indeed is fy(oo ; yM). The latter

statement means that €(z,6,) = eo(¢) will be treated as a sequence of independent
random variables with PDF’s f, (x). Call this expectation My . Thus
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= E El €a(ea(r))Co(eolS)CE, 80 )b™(s, 60)

= 21 E[€s(eot)]* - E(t, 60 )47 (5, 6o)

since ey(t) and ey(s) are independent for s #t. We also have €3(x) =[logf.(x)]' =

fi(x)/fe(x), and

El(e®)] = [}t‘z((x))] W)
(7.76)
- [EGF
) T T w

If ey(t) is Gaussian with variance A, it is easy to verify that ko = Ao . Hence
1 N
= Z BV 60)¥7( 60) (7.77)

Now the Cramér-Rao inequality tells us that for any unbiased estimator 6yof 6(i.e.,
estimators such that Edy = 6, regardless of the true value 6;) we must have
Cov by = My (7.78)

Notice that this bound applies for any N and for all parameter estimation methods.
We thus have

COV éN = Ko [ 2 E“"(tx oo)lpr(t!eo)jl (779)

Ko = Ao for Gaussian innovations

Multivariable Gaussian Case (*)

When the prediction errors are p -dimensional and jointly Gaussian with zero
mean and covariance matrices A, we obtain from the multivariable Gaussian distri-
bution

Liog detA +2eTA1e (7.80)

€(g,t; 8) = const + > 5

Then the negative logarithm of the likelihood function takes the form

N
Va8, A, 2% = const + D log det A + 23 ¢, 0)A7e(c, 6)  (7.81)
t=1
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If the p X p covariance matrix A is fully unknown and not parametrized through 8,
it is possible to minimize (7.81) analytically with respect to A for every fixed 0:

N
arg min (8, 4, 2" = A(0) = L3 e, 0)e7(1, 0) (7.82)
t=1

Then

A

O

arg min Va(6, An(8),Z%)
]

arg min [} log det Ax(8) + 3p)
‘]

(7.83)

(see problem 7D.3) where p = dime. Hence we may in this particular case use the
criterion

N

6y = arg min det[% > s(t,B)eT(t,O)] (7.84)
[ =1

With this we have actually been led to a criterion of the type (7.29) to (7.30) with

h(A) = detA.

information and Entropy Measures (*)

In (5.36) and (5.37) we gave a general formulation of a model as an assumed
PDF for the observations Z*:

Fult, ZY (7.85)

Let fo(t, Z°) denote the true PDF for the observations. The agreement between two
PDF’s can be measured in terms of the Kullback-Leibler information distance
(Kullback and Leibler, 1951):

£.F rJ .f O(t: X t)
. — f /| t
1 F) = [ s, 20 log 2025 e (7.86)
Here we use x° as an integration variable for Z'. This distance is also the negative
entropy of f, with respect to f,:

S(fos fm) = ~1(fo; fm) (1.87)

An attractive formulation of the identification problem is to look for a model
that maximizes the entropy with respect to the true system or, alternatively, minimizes
the information distance to the true system. This formulation has been pursued by
Akaike in a number of interesting contributions Akaike (1972, 1974a, 1981).

With a parametrized set of models Fue(t, ZY) = f(8; t, Z*), we would thus
solve

O = arg minI(foN, Z"); F(8; N, Z%) (7.88)
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The information measure can be written
I(fO’f—) = _f log[f((), N’xN)] 'f-O(N’ xN)de

+f log[ fo(N, x™)] - fo(N, x™)dx"

= —FE, logf(#; N, Z") + 6-independent terms

where E, denotes expectation with respect to the true system.
The problem (7.88) is thus the same as

6y = arg min[—E, log f(6; N, Z")] (7.89)
‘]

The problem here is of course that the expectation is not computable since the true
PDF is unknown. A simple estimate of the expectation is to replace it by the
observation

Eo log f(8; N, Z") = log f(6; N, Z") (7.90)

This gives the log likelihood function for the problem and (7.89) then equals the
MLE. The ML approach to identification can consequently also be interpreted as a
maximum entropy strategy or a minimum information distance method.

The distance between the resulting model and the true system thus is

I(fo(N, Z™); f(bn; N, Z)) (7.91)

This is a random variable, since 8y depends on Z*. As an ultimate criterion of fit,
Akaike (1981) suggested the use of the average information distance, or average
entropy

EGNI(fO(Nr ZN)’f_(éN9Nr ZN)) (792)

This is to be minimized with respect to both the model set and 6y. As an unbiased
estimate of the quantity (7.92), he suggested

log f(6n; N, Z¥) — dim 6 (7.93)

Calculations supporting this estimate will be given in Section 16.4.
The expression (7.93) used in (7.89) gives, with (7.72) and (7.73),

dim 0} (7.94)

N
Baic(ZV) = arg f)rnin {%lgl €(e(t,0),1,0) + N
This is Akaike’s information theoretic criterion (AIC). When applied to a given
model structure, this estimate does not differ from the MLE in the same structure.
The advantage with (7.94) is, however, that the minimization can be performed with
respect to different model structures, thus allowing for a general identification
theory. See Section 16.4 for a further discussion of this aspect.
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An approach that is conceptually related to information measures is Rissa-
nen’s minimum description length (MDL) principle. This states that a model should
be sought that allows the shortest possible code or description of the observed data.
See Rissanen (1978, 1986). Within a given model structure, it gives estimates that
coincide with the MLE. See also Section 16.4.

A Pragmatic Viewpoint

It is good and reassuring to know that general and sound basic principles, such
as maximum likelihood, maximum entropy, and minimum information distance,
lead to criteria of the kind (7.11). However, in the end we are faced with a sequence
of figures that are to be compared with “guesses” produced by the model. It could
then always be questioned whether a probabilistic framework and abstract prin-
ciples are applicable, since we observe only a given sequence of data, and the
framework relates to the thought experiment that the data collection can be re-
peated infinitely many times under “similar” conditions. It is thus an important
feature that minimizing (7.11) makes sense, even without a probabilistic framework
and without “alibis” provided by abstract principles.

7.5 CORRELATING PREDICTION ERRORS WITH PAST DATA

Ideally, the prediction error &(z,6) for a “good” model should be independent of
past data Z*~*. For one thing, this condition is inherent in a probabilistic model,
such as (7.69). Another and more pragmatic way of seeing this condition is that if
e(,0) is correlated with Z'~! then there was more information available in Z'~'
about y (¢) than picked up by ¥ (¢|6). The predictor is then not ideal. This leads to the
characterization of a good model as one that produces prediction errors that are
independent of past data.

A test if €(¢,0) is independent of the whole (and increasing) data set Z*~*
would amount to testing whether all nonlinear transformations of e(t,8) are un-
correlated with all possible functions of Z‘~'. This is of course not feasible in
practice.

Instead, we may select a certain finite-dimensional vector sequence {{(¢)}
derived from Z'~' and demand a certain transformation of {e(z,8)} to be un-
correlated with this sequence. This would give

%21 L(Ha(e(t, 0)) = 0 (7.95)

and the 0-value that satisfies this equation would be the best estimate 6y based on
the observed data. Here a(e) is the chosen transformation of €, and the typical
choice would be a(g) = «.

We may carry this idea into a somewhat higher degree of generality. In the
first place, we could replace the prediction error with filtered versions as in (7.10).
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Second, we obviously have considerable freedom in choosing the sequence {(¢). It is
quite possible that what appears to be the best choice of {(#) may depend on
properties of the system. In such a case we would let {(¢) depend on 8, and we have
the following method:

Choose a linear filter L(q) and let
ec(t,0) = L(Q)e(t,0) (7.963)
Choose a sequence of correlation vectors
{(t.0) = ¢(t.2',0) (7.96b)
constructed from past data and, possibly, from 6. Choose a function a(e). Then
calculate
v = sol [fv(6,2™ = 0] (7.96¢)
ecDy
1 N
fv(6,Z" = N > L(t,0)a(ex(t,0)) (7.96d)
t=1

Here we used the notation
sol[ f(x) = 0] = the solution(s) to the equation f(x) = 0

Normally, the dimension of { would be chosen so that fy is a d-dimensional
vector (which means that { is d X p if the output is a p-vector). Then (7.96¢) has as
many equations as unknowns. In some cases it may be useful to consider an aug-
mented correlation sequence { of higher dimension than d so that (7.96¢) is an
overdetermined set of equations, typically without any solution. Then the estimate
is taken to be the value that minimizes some quadratic norm of fy:

6y = arg min|fy(8, Z")| (7.97)
6cDy

There are obviously formal links between these correlation approaches and the
minimization approach of Section 7.2 (see, e.g., Problem 7D.6).

The procedure (7.96) is a conceptual method that takes different shapes,
depending on which model structures it is applied to and on the particular choices of
{. In the subsequent section we shall discuss the perhaps best known representatives
of the family (7.96), the instrumental-variable methods. First, however, we shall
discuss the pseudolinear regression models.

Pseudolinear Regressions

We found in Chapter 4 that a number of common prediction models could be
written as

7(116) = ¢7(1,0)6 (7.98)
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[see (4.21) and (4.45)]. If the data vector ¢(t, 6) does not depend on 8, this relation-
ship would be a linear regression. From this the term pseudolinear regression for
(7.98) is derived (Solo, 1978). For the model (7.98), the “pseudo-regression vector”
¢(t,0) contains relevant past data, partly reconstructed using the current model. It is
thus reasonable to require from the model that the resulting prediction errors be
uncorrelated with ¢(z, ). That is, we choose {(t,0) = ¢(z,8) and a(e) = £ in (7.96)
and arrive at the estimate

6FR = sol{% gl o6,y () — ¢7(1,6)8] = o} (7.99)

which we term the PLR estimate.

Models subject to (7.98) also lend themselves to a number of variants of
(7.99), basically corresponding to replacing ¢(t, 8) with vectors in which the “recon-
structed” (6-dependent) elements are determined in some other fashion. See Sec-
tion 10.4.

7.6 INSTRUMENTAL-VARIABLE METHODS
Instrumental Variables

Consider again the linear regression model (7.31):
y(116) = ¢'(1)0 (7.100)

Recall that this model contains several typical models of linear and nonlinear
systems. The least-squares estimate of @ is given by (7.34) and can also be expressed
as

N
% sol{% 2 e[y () — ¢7(1)6] = 0} (7.101)
t=1
An alternative interpretation of the LSE is consequently that it corresponds to
(7.96) with L(g) = 1 and {(,8) = o¢(2).
Now suppose that the data actually can be described as in (7.37):

y(8) = ¢T(1)6y + vo(2) (7.102)
We then found in Section 7.3 that the LSE 6y will not tend to 6 in typical cases, the
reason being correlation between vo(f) and ¢(#). Let us therefore try a general
correlation vector {(f) in (7.101). Following general terminology in the system
identification field, we call such an application of (7.96) to a linear regression an
instrumental-variable method (IV). The elements of { are then called instruments or
instrumental variables. This gives

sol{—;—l 2,1 Oy —o"(ne] = 0} (7.103)

\%
On
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or

a1V
Y

[%gl c(tw(t)] N Z Loy (7.104)

provided the indicated inverse exists. For éN to tend to 6, for large N, we see from
(7.103) that then (1/N)X- ; {(£)vo(t) should tend to zero. For the method (7.103) to
be successfully applicable to the system (7.102), we would thus require the following
properties of the instrumental variable {(f) (replacing sample means by expecta-
tion):

E{(t)¢™(f) be nonsingular (7.105)
E{(H)ve(t) = 0 (7.106)

In words, we could say that the instruments must be correlated with the regression
variables but uncorrelated with the noise. Let us now discuss possible choices of
instruments that could be subject to (7.105) and (7.106).

Choices of Instruments

Suppose that (7.100) is an ARX model

y® +tayt-1)+---+a,yt—n,)
=bu(t—1)+ -+ b,ult —n) +v(Qe) (7.107)

Suppose also that the true description (7.102) corresponds to (7.107) with the
coefficients indexed by “zero.” A natural idea is to generate the instruments simi-
larly to (7.107) so as to secure (7.105), but at the same time not let them be
influenced by {v,(¢)}. This leads to

(O=K(@[-x¢-1)—x(t—-2)... —x(@t —n)u(t—1)...u(t —n))" (7.108)
where K is a linear filter and x (¢) is generated from the input through a linear system
N(@)x() = M(qu() (7.109)
Here
N@=1+mq '+ +n,qg"™
M@ =my+mq'+---+m, g™ (7.110)

Most instruments used in practice are generated in this way. Obviously, {(¢) is
obtained from past inputs by linear filtering and can be written, conceptually, as

L) =gt uh (7.111)

If the input is generated in open loop so that it does not depend on the noise vy(t) in
the system, then clearly (7.106) holds. Since both the ¢-vector and the {-vector are
generated from the same input sequence (¢ contains in addition effects from vy), it
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might be expected that (7.105) should hold “in general.” We shall return to this
question in Section 8.6.

A simple and appealing choice of instruments is to first apply the LS method
to (7.107) and then use the LS-estimated model for N and M in (7.109). The
instruments are then chosen as in (7.108) with K(q) = 1. Systems operating in
closed loop and systems without inputs call for other ideas. See Problem 7G.3 for
some suggestions.

As outlined in Problem 7D.5, the use of the instrumental vector (7.108) to
(7.110) is equivalent to the vector

@ = K(g) [u@t — Du(—2)...u(t —n, —np)]" (7.112)
N ( ) e a b .
The IV estimate §Y in (7.104) is thus the same for {* as for { in (7.108) and does
not, for example, depend on the filter M in (7.110).

Model-dependent Instruments (*)

The quality of the estimate 6% will depend on the choice of Zg(t) In Sectlon 9.5
we shall derive general expressions for the asymptotic covariance of 6y and
examine them further in Section 15.3. It then turns out that it may be desirable to
choose the filter in (7.109) equal to those of the true system: N(gq) = Ao(q);
M (q) = By(q)- These are clearly not known, but we may let the instruments depend
on the parameters in the obvious way:

0t,0) = K(@[—x( —1,0)... —x(t = ns, ) u(t —1)...ut —n)]"
A(q)x(1,0) = B(qu () (7.113)

In general, we could write the generation of {(z, 6):

{(t,6) = Ku(q,0)u(?) (7.114)

where K, (g, 9) is a d-dimensional column vector of linear filters.
Including a prefilter (7.96a) and a “shaping” function a( - ) for the prediction
errors, the IV method could be summarized as follows:

er(t,0) = L@y () — ¢'(t)6] (7.115a)
oy = 5o [fv(8,Z™) = 0] (7.115b)
where
W(6,.2% = 5 S 1t0)aer(t.0) (7.115¢)
{(t,0) = Ku(g.,0)u(t) (7.115d)

194 Parameter Estimation Methods



Extended IV Methods (*)

So far in this section the dimension of { has been equal to dim 6. We may also
work with augmented instrumental variable vectors with dimension dim { > d. The
resulting method, corresponding to (7.96) and (7.97), will be called an extended IV

method and takes the form ,

N
0% = arg min L3 1(,0)a(er(:,6)) (7.116)
t=1

)
The subscript Q denotes O -norm:

|x[p = xTQx (7.117)

In case { does not depend on 6 and o(e) = ¢, (7.116) can be solved explicitly. See
Problem 7D.7.

Frequency-domain Interpretation (*)

Quite analogously to (7.20) to (7.25) in the prediction error case, the criterion
(7.115¢) can be expressed in the frequency domain using Parseval’s relationship. We
then assume that a(e) = ¢ and that a linear generation of the instruments as in
(7.114) is used. This gives

740, 2% = 3= | [6u(e®) = G (e, o) UN ()P
-A(e™,0)-L(e™)-K,(e™,0)dw (7.118)

Here A (g, 0) is the A -polynomial that corresponds to 6 in the model (7.107).

Multivariable Case (*)

Suppose now that the output is p-dimensional. Then the instrument {(¢) is a
d X p matrix. A linear generation of {(, 8) could still be written as (7.114), with the
interpretation that the ith column of {(t, 8) is given by

19(t,0) = K (q,0)u(?) (7.119)

where K{?(q,0) is a d X m matrix filter. [K,(g,9) in (7.114) is thus a tensor, a
“three-index entity’’]. With a(e) being a function from R’ to R and L(q) ap X p
matrix filter, the IV method is still given by (7.115).

7.7 SUMMARY
There are several ways to fit models in a given set to observed data. In this chapter
we have pointed out two general procedures. Both deal with the sequence of

prediction errors {(¢, )} computed from the respective models using the observed
data, and both could be said to aim at making this sequence “small.”

7.7 Summary 195



The prediction-error identification approach (PEM) was defined by (7.10) to
(7.12):

6y = arg min V;(0, Z")
€Dy

Vi(0,Z") = %% £(e(4,0),0, ) (7.120)

It contains well-known procedures, such as the least-squares (LS) method and the
maximum-likelihood (ML) method and is at the same time closely related to Bay-
esian maximum a posteriori (MAP) estimation and Akaike’s information criterion
(AIC).

The correlation approach was defined by (7.96):

er(t,8) = L(q)e(1,6)
by = ol [fv(8,2") = 0]

(8,2 = 2 Ut 0)a(er(16) (7.121)

It contains the instrumental-variable (IV) technique, as well as several methods for
rational transfer function models.

System identification has often been described as an area crowded with
seemingly unrelated ad hoc methods and tricks. The list of names of available and
suggested methods is no doubt a very long one. It is our purpose, however, with this
chapter, as well as Chapters 8 to 11, to point out that the number of underlying basic
ideas is really quite small, and that it indeed is quite possible to orient oneself in the
area of system identification with these basic ideas as a starting point.

7.8 BIBLIOGRAPHY

The parameter estimation methods described in this chapter all go back to basic
methods in statistics. For general texts, we refer to Cramér (1946), Rao (1973), and
Lindgren (1976).

Section 7.2: The term “prediction-error methods’ was perhaps first coined
in Ljung (1974), but it had long been realized that the common methods of system
identification had aimed at making the prediction error small. From an operational
point of view, the criterion (7.120) can be viewed as a nonlinear regression method.
See, for example, Jennrich (1969) and Hannan (1971b). Various norms have been
discussed (see Section 15.2). The {.-norm (related to “unknown-but-bounded”
disturbances) is discussed in Milanese and Tempo (1985) (cf. Problem 7G.7) and
Fogel and Huang (1982). See also Schweppe (1973). The frequency-domain expres-
sions for the prediction-error criteria go back to Whittle (1951), who dealt with the
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input-free case. Among many references, we may mention Hannan (1970), Chapter
VI, for a detailed study (still with no input). Related formulas are also given by Solo
(1978), Ljung and Glover (1981), and Wahlberg and Ljung (1986).

Section 7.3: The statistical roots of the least-squares method are examined
in Appendix II. The application to times series has its origin in the work of Yule
(1927) and Walker (1931), with a first asymptotic analysis by Mann and Wald (1943).
The application to dynamic systems with an input was made independently by
several authors, with an early comprehensive description and analysis by Astrom
(1968), to some extent reprinted in Astrém and Eykhoff (1971). A good account of
different variants of the LS method is given in Hsia (1977).

Section 7.4: Whittle pioneered maximum likelihood methods for AR and
ARMA models using frequency domain formulations, see, e.g., Whittle (1951).
The principle of maximum likelihood was then applied to dynamical systems by
Astréom and Bohlin (1965) (ARMAX model structures) and Box and Jenkins (1970)
[model structure (4.31)]. Since then a long list of articles has dealt with this ap-
proach. Astrém (1980) may be singled out for a survey.

Frequency-domain variants or approximations of the likelihood function have
been extensively used by Whittle (1951), Hannan (1970), and others. The Bayesian
MAP approach is comprehensively treated in Peterka (1981a, b). The calculations
leading to (7.84) were first given by Eaton (1967) and Akaike (1973). Entropy and
information theoretic criteria have been discussed extensively by Akaike and
Rissanen. We may single out Akaike (1974a, 1981) and Rissanen (1985, 1986) as
recommended reading. A general reference on entropy and statistics is Kullback
(1959). The use of cross-entropy for estimation is discussed in Shore and Johnson
(1980) and is extensively treated in Musicus (1982).

Sections 7.5-7.6: The way to describe the “correlation approach” as
presented here is novel, although the different methods are well known. The IV
method was introduced into statistics and econometrics by Reiersgl (1941) and has
been applied to many parameter estimation problems in statistics (see, e.g., Ken-
dall and Stuart, 1961). Applications to dynamic systems in the control field have
been pioneered by Wong and Polak (1967), Young (1965), and Mayne (1967). For
applications to ARMA models see Stoica, Friedlander and Séderstrom (1986). A
historical background is given by Young (1976). For recent comprehensive treat-
ments, see Soderstréom and Stoica (1983) and Young (1984).

7.9 PROBLEMS

7G.1. Input error and output error methods: Consider a model structure

y(0) = G(g,0)u(r)
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without a specified noise model. In the survey of Astrém and Eykhoff (1971) identifica-
tion methods that minimize “‘the output error”

N
fn = argmin 2 [y(t) — G(g,0)u(®)T
=1
and the “input error”
N
6y = arg min 2, [u(r) -~ G7'(g,0)y ()
t=1

are listed. Show that these methods are prediction error methods corresponding to
particular choices of noise models H (g, 9).

7G.2. Spectral analysis as a prediction error method: Consider the model structure
G(e™,0) = 2 (g + igh)Wy(w — o)
k=1
0 =[grgl....g &l

and let H(e™,m) be an arbitrary noise model parametrization. Let 6y be the
prediction-error estimate obtained by minimization of (7.23) and (7.25):

. [ 1Gn(e™) = G(e®,0)F [Un(w)P
a— . .
-
(a) Consider the special case H(e*’,n) = 1 and

L ol =

Show that G (e*, 6y) is then given by (6.46).
(b) Assume, in the general case, that

H(e*,m)  Wy(o — wx) = H(e™, m) - Wy(w — o)
G(e",0) Wilw = wx) = G(e™,6) - Wi — w)

Show that (6.46) then holds approximately.
7G.3. Instruments for closed-loop systems: Consider a system

As()y (1) = Bo(q)u(r) + vo(r)
under the output feedback

u(t) = Fi(g)r(t) — F(q)y (9
(a) Let x(¢) and {() be given by

N(g)x(t) = M(g)r(9)
(WO=K@-x@t—1)...—x(@t —n)r(t — )...r(t = n)"
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7G.4.

7G.5.

7G.6.

Show that (7.106) holds for these instruments, and verify that (7.105) holds for a
simple first-order special case.

(b) Suppose that ve(f) is known to be a MA process of order s. Introduce the instru-
ments

W=[-y@t-1-9)...—y@t—n.=)u@ —1-3s)...ut —n, —95)]7

Show the same results as under part (a). See also Soderstréom, Stoica and Trulsson
(1987).

Suppose Yy = [y(1),...,y(N)]" is a Gaussian N-dimensional random vector with
zero mean and covariance matrix Ry(@). Let

Rn(8) = Ln(8)AN(0)LE(6)

where Ly(8) is lower triangular with 1’s along the diagonal and Ay(8) a diagonal
matrix with A¢(?) as the 7, t element. Let

En(8) = LN (0)Yx
En(8) = [e(1,8),...,e(N,0)]"

Show that, if 6 is a parameter to be estimated, then the negative log likelihood
function when Yy is observed is

N log2w + 1 log det Ry(8) + %Y{,RK,‘(O)YN

2 2
Show also that this can be rewritten as
N 1 1 X €%t,0)
—log2w + = loghe(2) + =
7 log2m 43 2 logh)) +3 2 S8

where &(1, 0) are independent, normal random variables with variances Ay(¢). How does
this relate to our calculations (7.69) to (7.75)?

Let the two random vectors X and Y be jointly Gaussian with
EX = myx; EY =my
EX — mx) (X —mx)" = Py EY -my)(Y —my)" =P
E(X —mx)(Y — my)" = Pyy

Show that the conditional distribution of X given Y is

(XIY) € N(mx + nyP)_rl(Y - mY),PX - nyP)—rlP;y)
Consider the model structure

X = F(O)W
Y=H(0)X +E

(7.122)

where W and E are two independent, Gaussian random vectors with zero mean values
and unit covariance matrices. Note that state-space models like (4.81), without input,
can be written in this form by forming X" = [x"(1) x7(2)...x"(N)] and Y7 =
[y1)y(2)...y(N)]. Let

R(8) = I + H(8)F(6)F"(6)H(6)
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Show the following:

(a)

(b)

()

(@

(e)

®

The negative log likelihood function for 8, (ignoring 6-independent terms) when Y
is observed is

V(8) = —logp(Y|8) =3YTR™'()Y + 3 log det R(6)
Let
bw = arg min V()
6

(cf. Problem 7G .4).
Let the conditional expectation of X, given Y and 6 be X*(8). Show that

E(X|Y, 6) = X*(8) = [F(8)FT(6)H™(6)]R *(6)Y (7.123)
and that
—logp(X]6,Y) = ¥X — X°(6))"SY(6)(X — X°(6)) + 5 log det S(6)

S(8) = F(6)FT(6) — F(8)F"(0)H"(6)R (9)H(0)F(0)FT(8) (7.124)

(cf. Problem 7G.5) [)2”(0) gives the smoothed state estimate for the underlying
state space model, see Anderson and Moore (1979)].

Assume that the prior distribution of 6 is flat. (p (@) ~ independent of 0). Then
show that the joint MAP estimate (7.65) of 8 and X given Y,

(éi&AP ,Xi{AP) = argor)l(laxp(f),XlY)
is given by
ar%(min [—logp (Y, X|6)}
, 0
where

—logp(Y, X|0) =3|Y — H(O)X|* + 3|F *(8)X[ + log det F(8) (7.125)
Show that the value of X that minimizes (7.125) for fixed Y and @is X*(6), defined
by (7.123). Hence

f%ear = arg min §|Y — H(6)X*(8)]* + IIF'(8)X*(8)[* + log det F(6)}
o
X;vtAP = Xs(éi{AP)
Establish that

—logp(Y|6) = —logp(Y, X|0) + logp(X|6,Y) (7.126)
Establish that

—logp(Y|6) = BY — H(O)X*()P + 3F (§)X*(8)]* + 5 log det R(8)]  (7.127)
[Hint: Use the matrix identity (cf. (7.124))
5(6) = [F7(6)F'(6) + HT(O)H ()]
and the determinant identity
det(l, + AB) = det(I; + BA)

for A and Br X s and s X r matrices and /, the r X r identity matrix.]
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(g) Conclude that O # 034ap in general.

Remark: The problem illustrates the relationships among various expres-
sions for the likelihood function, the smoothing problem, and MAP-estimates.
“Log likelihood functions” of the kind (7.125) have been discussed, e.g., in Sage
and Melsa (1971) and Schweppe (1973), Section 14.3.2.

7G.7. Consider the linear regression structure
y(®) =16 +v()

Based on the theory of optimal algorithms for operator approximation, (Traub and
Wozniakowski, 1980), Milanese and Tempo (1985) and Milanese et al (1986) have
suggested the following estimate:

For given 8, y~ and {@(£)}{, define the set

As={8|ly(r) — o"(H8] <8 allt=1,... N}

Assuming As to be bounded and non-empty define its “center” §.(As) as fol-
lows: The ith component is

[6:(A8)]” = Hfsupoc 4, 6 + infoe 4, 6°]

(superscript (i) denoting i : th component). The estimate 8% is then taken as 0.(As).

(a) Suppose that dim 8 = 1. Prove that 0% is independent of d, as long as A, is
nonempty and bounded.

(b) Whendim 6 > 1, 6% may in general depend on 3. Suppose that as & decreases to a
value 3*, A, reduces to a singleton

s = {6"
Then clearly 6% = 6'. Show that
0% = arg min max |y (f) — ¢”(£)8)]
] t

This “optimal estimate” thus corresponds to the prediction error estimate (7.12)
with the ¢.-norm

€(e¥(- ,8)) = max[e(s, )]
14
This in turn can be seen as the limit as p —  of the criterion functions
(e) = [eff

in (7.11).
TE.1. Estimating the AR Part of an ARMA model: Consider the ARMA model

Ay (®) = C(ge)

with orders n, and n., respectively. A method to estimate the AR part has been given
as follows. Let

B @ =5 2y Oy -
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7E.2.

7E.3.

202

Then solve for d; from
R@+aR -1+ +a,RV(r-n) =0
T=n.+1,n.+2,...,n. +n,

Show that this (essentially) is an application of the IV method using specific
instruments. Which ones? (See Cadzow, 1980, and Stoica, S6derstrém, and Fried-

lander, 1985.)
Sinusoids in noise: Consider a sinusoid measured in white Gaussian noise:

y(f) = ae™ + e(r)

For simplicity we use complex algebra. The constant « is thus complex-valued. The
amplitude, phase and frequency are unknown: 8 = (a, w). The predictor thus is

y(t8) = ae™

If e(t) has variance 1 (real and imaginary parts independent), the likelihood function
gives the prediction-error criterion:

V6,2 =3 3 ly(®) = Jlo)F

t=1

Show that the MLE
Oy = [(}N ] = arg min Vn(6,Z")
Wy P
obeys
Oy = arg max | Ya(w)|?

where Yy(w) is the Fourier transform (2.37) of y (¢).

Error-in-variables models: Econometric models often include disturbances both on
inputs and outputs (compare our comment in Section 2.1 on Figure 2.2). Consider the
model in Figure 7.1. The true inputs and outputs are thus s and x, while we measure u
and y. In a first-order case, we have

x(®) +ax(t — 1) =bs(t — 1)
y(®) =x(@) +e()
u(®=s@) +w(@

Suppose that w and e are independent white noises with unknown variances. Discuss
how a, b, and these variances can be estimated using measurements of y and u.

u y Figure 7.1 An error-in-variables model.
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TE4.

7E.S.

7E.6.

7E.7.
7E.8.

7T.1.

[Remark: With the assumption that the color of the noises are known, the problem is
relatively simple. Without this assumption (“prejudice’”), the problem is not yet
solved. See Kalman (1983), B.D.O. Anderson (1985), and Séderstrom (1981)].

Consider a probabilistic model, implicitly given in the state-space form
x(t+1)=ax(@) +w()
y(@®) =x(t) +e() (7.122a)

where {w(¢)} and {e(¢)} are assumed to be independent, white Gaussian noises, with
variances

sz(t) =nNn
Ee*(t) =1 (assumed known) (7.122b)

Let the parameter vector be
g = [“ ] (7.122¢)

n

Assume initial conditions for x (0) (mean and variance) such that the prediction y (¢|9)
becomes a stationary process for each 6 (i.e., so that the steady-state Kalman filter can
be used). Determine the log-likelihood function for this problem. Compare with the
log-likelihood function for a directly parametrized innovations representation model
(4.88).

Consider the nonlinear model structure of Problem 5E.1. Discuss how the LS, ML, IV,
and PLR methods can be applied to this structure. (Reference: Fnaiech and Ljung,
1986).
Consider the model structure

y() =¢"(1)6 + v(r)

where the regression vector ¢(¢) can only be measured with noise:

n(@®) = ¢(0) + w(0)

The noises {w(#)} and {v(¢)} may be nonwhite and mutually correlated. Suppose a
vector {(¢) is known that is uncorrelated with {v ()} and {w (¢)} but correlated with ¢(t).
Suggest how to estimate 6 from y (¢), n(¢), and {(¢),t = 1,...,N.

Suppose in (7.74) and (7.75) that X does not depend on 6. Determine An.

Consider the model structure
y(t18) = —ay(t — 1) + bu(t — 1)
and assume that the true system is given by
y(@) —09y(t — 1) =u(t — 1) + eot)

where {eo(#)} is white noise of unit variance. Determine the Cramér—Rao bound for the
estimation of a and b. How does it depend on the properties of u?

Suppose that a true description of a certain system is given by

y@O) +ay(t — 1)+ +ady(t —n)=bu(t — 1)+ -+ + b u(t — ns) + volt)
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7D.1.

7D.2.

7D.3.

7D.4.

7D.5.
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for a stationary process {vo(f)} independent of the input. Let ¢(¢) be defined, as usual,
by (7.32), and let ¢(¢) be given by

) =[-yot —1)...=yo(t —n)u(t —1)...u(t — n,)]"
where
yot) + alyo(t — 1) + - +an yo(t = na) = blu(t — 1) + - - + b, u(t — ny)
Prove that for any vector of instrumental variables of the general kind (7.108) we have
E{(0e’(t) = EL1)"()

Consider the ARX structure (4.7) where one parameter, say b, , is known to have a
certain value bY . Show that the associated predictor can be written as

Y(t|6) = 67 o(r) + n(0)
with proper definitions of 8, ¢, and p (¢ and . to be known variables at time #). Derive

the LS estimate and the IV estimate for this model.

Let A be a given, positive symmetric definite matrix and let B and C be given matrices.
Establish that

§"A0 — 8B - B0+ C=[0-A'BI"TA[6 —-A'Bl+C—-B"A"'B
=C-B"A'B
and use this result to prove all the expressions for the LSE in Section 7.3 [(7.34), (7.42),

(7.44), and (7.47)]. The matrix inequality D = B is to be interpreted as “D — B is a
positive semidefinite matrix.”

Hint: For (7.47), rewrite (7.46) as

1 N
VM6, Z7) = tr 2@ - T e®Ily() — 6" e®)"
=1
Let X be an invertible square p X p matrix with elements ;. Prove the differentiation
formula
9

60',7 det 3 = det[Z] W

where w; is the i,j element of 7). [Hint: Use det(/ + eA)=1+getrd +
higher-order terms in &]. Use the result to prove (7.82) and (7.83).

Show that the two instrumental variable vectors, of dimension d, {,(¢) and {x(t), where
pi(t) = Tpa(¢f) with T invertible, give the same estimate 6% in (7.104).

Show that if two variables x and u are associated as in (7.109) and (7.110) then we can
write

[ —x(t‘— 1)-
: u(t - 1)
=x(t=n)|_ o 1 u(t —2)
we -1 | TSN G s
: u(t —n, — ny
L u(t —nn) |
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7D.6.

7D.7.

7D.8.

7S8.1.

78.2.

7C.1.

7.9 Problems

for an (n, + n,, ) X (n, + n, ) matrix

__m(] —my cee TMy,, 0 e 0 7
0 —mo M1 —My, ... 0
S(-M,N) = 0 “my  —my M
’ 1 n n,, 0 ... 0
1 R n,, ... O
o o0 .. i ;,1 -

Such a matrix is called a Sylvester matrix (see, e.g., Kailath, 1980), and it will be
nonsingular if and only if the polynomials in (7.110) have no common factor. Use this
result to prove that the instruments (7.112) give the same IV estimate as the instru-
ments (7.108). Reference: Soderstrém and Stoica (1983).

Show that the prediction-error estimate obtained from (7.11) and (7.12) can also be
seen as a correlation estimate (7.96) for a particular choice of L, {, and a.

Give an explicit expression for the estimate 65 in (7.116) in the case { does not
depend on 6, and a(e) = «.
Consider the symmetric matrix
B
)
A—-BC'BT=0.

A
"= [BT
Show that if H = 0, then

Hint: Consider xHx 7 for
x =[xy —x;BC™]
with x, arbitrary.
Write a MACRO
TH = LS(y, u, na, nb, nk)
that computes the LS estimate (7.34) for the ARX model (4.7):
yO+ayt-—1)+- - +a,y( —na)
=buu(t —nk) + -+ burpp-1u(t —nk +1 — nb) + e(?)

Let the; result TH be consistent with the format of Problem 4S.1 and let A in TH be
2-Vilbn, ZM).
Write a MACRO
TH = IV(y, u, na, nb, nk, N, M)

that computes the IV estimate (7.104), (7.108), (7.109) [K (g) = 1] for the same model
as in Problem 7S.1.
Simulate the system

g ' +0.5¢7?
1-15¢7'+0.7¢72

y@) = u(t) + eot)
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over N samples, with {u(¢)} being a random binary *1 signal and {e,(#)} white Gaussian
noise with variance 1. Use the obtained data record [ZY = (y", u™)] to identify the
system in the following ways:

(a) Determine the spectral analysis estimate using various values of -y (Problem 68S.1).

(b) Determine the LS estimate for various model orders, and compare the correspond-
ing Bode plots with the spectral analysis estimate (and the true Bode plot). Why
does the fit become better as the model orders increase?

(¢) Determine the IV estimates for instruments generated as in (7.108) to (7.110) with
n, =n, =2and
cl: K(@=1, N@=1, M(@=q"
c2: K(@=1, N, M being the LS estimates of A and B
1
1-15¢7'+0.7¢7%
N(@=1-15¢""+0.7¢7
M(@)=q ' +05¢7?

c3: K(g)=

Try n, = n, = 3. What happens?
Try N = 100 and N = 400 and some different realizations to get a feel for
the variability of the results.

7C.2. Simulate the system
y(@) —09y(t — 1) =u(t — 1) +0.5u(t — 2) + et
with u and e, as in Problem 7C.1. Let N = 100. Consider the two model structures

Mz y@O +ay(t — D) =ut —1)+bu(t—2)+e()
My y(t)=;——u(t)+e(t)

Apply the quadratic prediction-error approach to each of them and draw mesh plots of
the corresponding criterion functions as functions of (a, b), and (f, b) respectively.

APPENDIX 7A: PROOF OF THE CRAMER-RAO INEQUALITY
The assumption EG(y") = 6, can be written

b= | OGN (6, xdx (A1)
By definition we also have

1= Lny(Oo ,xN)dx™N (7A.2)

Differentiating these two expressions with respect to 6, gives
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1= 80|40t 00.x )| ax
=f "(xN)[ log f, (6o, x ”)] £ (8, x™)dx™ (7A.3)

= B6(y"| 12 108£,(00, " |

(1is the d X d unit matrix) and

0= |amh @] ax - [ |5 108580, 5], (8, 2™

(TA.4)
= E[i logf, (& N)]T
d00 g y\ %,y
Expectation in these two expressions are hence w.r.t. y~.
Now multiply (7A.4) by 6, and subtract it from (7A.3). This gives
A d T,
EB(™ — 801 - 108f, (00,3 | =1 (7A.5)
Now denote
A d
a=0(y™ — 6, B = a6 logf, (6o, y™) (7A.6)

(both d-dimensional column vectors) so that

EapT =1 (TA.7)

T _JEaaT I
e[Glla) -1 =0
BILB 1 Epp”
where the positive semidefiniteness follows by construction. Hence Problem 7D.8
proves that

Hence

Eao” = [EBRT]

which is (7.67). It only remains to prove the equality in (7.68). Differentiating the
transpose of (7A.4) gives

0= fn[dioz logf, (6o ,x”)]fy(f)o ,xMdxV
+ [ |2 108 00,5 |2 1oy (80, )| £ (8, 2™

which gives (7.68)
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CONVERGENCE AND CONSISTENCY

8.1 INTRODUCTION

In Chapter 7 we described a number of different methods to determine models from
data. To use these methods in practice, we need insight into their properties: How
well will the identified model describe the actual system? Are some identification
methods better than others? How should the design variables associated with a
certain method be chosen?

Such questions relate, from a formal point of view, to the mapping (7.7) from
the data set Z" to the parameter estimate 6y:

ZN—> éN € DM (81)

Questions about properties of this mapping can be answered basically in two ways:

1. Generate data Z" with known characteristics. Apply the mapping (8.1) (cor-
responding to a particular identification method) and evaluate the properties
of 6. This is known as simulation studies.

2. Assume certain properties of Z"V and try to calculate what the inherited
properties of 8y are. This is known as analysis.

In this chapter we shall analyze the convergence properties of 6y as N tends to

infinity. Since we will never encounter infinitely many data, such analysis has the
character of a “thought experiment,” and we must support it with some assump-
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tions about a corresponding infinite data set Z®. There are some different possi-
bilities for such assumptions (see Problem 8T.1). Here we shall adopt a stochastic
framework for the observations, along the lines described in Chapter 2. We shall
thus consider the data as realizations of a stochastic process with deterministic
components. It might be worthwhile to contemplate what analysis under such
assumptions actually amounts to. A probabilistic framework relates to the following
questions: What would happen if I repeat the experiment? Should I then expect
a very different result? Will the limit of 6y depend on the particular realization of
the random variables? Even if the experiment is never repeated, it is clear that such
questions are relevant for the confidence one should develop for the estimate, and
this makes the analysis worthwhile. It is then another matter that the probabilistic
framework that is set up to answer such questions may exist only in the mind of the
analyzer and cannot be firmly tied to the real-world experiment.

It should also be remarked that a conventional stochastic description of dis-
turbances is not without problems: For example, suppose we measure a distance
with a crude measuring rod and describe the measurement error as a zero-mean
random variable, which is independent of the error obtained when the experiment is
repeated. This assumption implies, by the law of large numbers, that the distance
can be determined with arbitrary accuracy, if only the measurements are repeated
sufficiently many times. Clearly such a conclusion can be criticized from a practical
point of view. Results from theoretical analysis must thus be interpreted with care
when applied to a practical situation.

The question of how 6y behaves as N increases clearly relates to the question
of how the corresponding criteria functions Vy (6, Z") and fy(6, Z") behave. These
are, with a stochastic framework, sums of random variables, and their convergence
properties will be consequences of the law of large numbers. Our basic technical
tool in this chapter will thus be Theorem 2B.1. In order not to conceal the basic
ideas with too much technicalities, we shall only complete the proofs for linear,
time-invariant models (such as those in Chapter 4) and quadratic criteria. The
techniques and results, however, carry over also to more general cases.

The chapter is organized as follows. Assumptions about the infinite data set
Z* are given in Section 8.2. Convergence for prediction-error estimates is treated in
Section 8.3. Consistency questions (i.e., whether the true system is retrieved in the
limit) are discussed in Section 8.4. A frequency-domain characterization of the limit
estimate is given in Section 8.5. In Section 8.6, the corresponding results are given
for the correlation approach.

A Preview

In the chapter a general and natural result is derived: the estimate 6y obtained
by the prediction-error method (7.120) will converge to the value that minimizes the
average criterion E€¢(e(t, ), 8). Here E can heuristically be taken as averaging over
time or ensembles (possible realizations) or both. The chapter deals both with the
formal framework for establishing this “‘obvious™ result and with characterizations
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of the limit value of 6y. The reluctant reader of theory should concentrate on
understanding the main result, Eq. (8.29), and the frequency-domain characteriza-
tion of the limit model in Section 8.5.

8.2 CONDITIONS ON THE DATA SET

The data set
zZN = {u(l)’y(l)’ s ’u(N)’y(N)}

is the basic starting point. Analysis, we said, amounts to assuming certain properties
about the data and computing the resulting properties of 6y . Since the analysis of 6y
will be carried out for N — o, it is natural that the conditions on the data relate to
the infinite set Z~. In this section we shall introduce such conditions, as well as some
pertinent definitions.

A Technical Condition D1 (*)

We shall assume that the actual data are generated as depicted in Figure 8.1.
The input u may be generated (partly) as output feedback or in open loop (u = w).
The signal e, represents the disturbances that act on the process. [The subscript 0
distinguishes this “true’ noise e, from the “dummy’ noise e we have used in our
mode! descriptions (7.3)]. The prime objective with condition D1 is to describe the
closed-loop system in Figure 8.1 as a stable system so that the dependence between
far apart data decays. The most restrictive condition is the assumed linearity (8.2). It
can be traded for more general conditions, at the price of more complicated analy-
sis. See Ljung (1978a), condition S3. For our analysis, we shall use the following
technical assumptions:
D1: The data set Z> is such that for some filters {d )(k)}
y(@) = 2 dP(Rw — k) + 2 dP(K)ey(t — k)
k=1 k=0 (8.2)

w® = 3 dPlow ~ )+ 3 dOet - b

léo

System -y

Feedback | Figure 8.1 The data-generating config-
uration.
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where

1. {w(r)}is a bounded, deterministic, external input sequence. (8.3)

2. {eo(t)} is a sequence of independent random variables with zero mean values

and bounded moments of order 4 +  for some & > 0. (8.4)
Moreover,

3. The family of filters {d (k)}i=,,i = 1-4;¢t =1,2,...is uniformly stable.
(8.5)
4. The signals {y (1)}, {u(#)} are jointly quasi-stationary. (8.6)

Recall the definitions of stability (2.29) and quasi-stationarity (2.58) to (2.62).
(Problem 2T.4 showed that uniform stability holds, even if the closed-loop system
goes through “unstable transients.””)

Remark. When we say that {w(#)} is “deterministic,” we simply mean that we
regard it as a given sequence that (in contrast to ) can be reproduced if the
experiment is repeated. The stochastic operators and qualifiers, such as E, w.p. 1,
and AsN will thus average over the properties of {ex(r)} for the fixed sequence
{w(2)}. Of course, this does not exclude that this particular sequence {w ()} actually
is generated as a realization of a stochastic process, independent of the system
disturbances. In that case it is sometimes convenient to let the expectation also
average over the probabilistic properties of {w (¢)}. We shall comment on how to do
this below [Eq. (8.27)]. &

A True System ¥

We shall sometimes use a more specific assumption of a “true system”:
S1: The data set Z* is generated according to

¥y (1) = Go(q)u(t) + Ho(q)eo?) (8.7)

where {eo(?)} is a sequence of independent random variables, with zero mean values,
variances Ay, and bounded moments of order 4 + &, some & > 0, and Hy(q) is an
inversely stable, monic filter.

We thus denote the true system by &. Given a model structure (4.4),
M: {G(g,6),H(q,0)|0 € Dy} (8.8)

it is natural to check whether the true system (8.7) belongs to the set defined by
(8.8). We thus introduce

Dr(¥, M) = {6 € Dy|G(e®, 6) = Gy(e™); H(e™, 8) = Hy(e™); —m = 0 =} (8.9)
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This set is nonempty precisely when the model structure admits an exact description
of the true system. We write this also as

P eM (8.10)

Although such an assumption is not particularly realistic in practical applications, it
yields a quite useful insight into properties of the estimated models.
When S1 holds, a more explicit version of conditions D1 can be given:

Lemma 8.1. Suppose that S1 holds, and the input is chosen as
u(t) = —F(q)y(®) + w()
such that
[1+ Go(g)F(9)]* Go(g), [1 + Gq)F(q)] ™' Ho(g), F(9)[1 + Gl(@)F(9)]™ Go(q)
and

F(9)[1 + Gl(q)F(@)]™" Hi(q)
are stable filters and that {w ()} is quasi-stationary. Then condition D1 holds.

Proof. We have, for the closed-loop systems,

y(© = [1 + Go(@F (@] Go(q)w (1) + [1 + Go(@)F (9)]™ Ho(@)eo(r) (8.11)

The stability condition means that the filters in (8.11) are stable. Thus (8.6) follows
from Theorem 2.2. Moreover, (8.2), and (8.5), are immediate from (8.11) and the
stability assumption. W

Information Content in the Data Set

The set Z" is our source of information about the true system. This is to be fit
to a model structure M of our choice. (The reader might at this point review Section
4.5, if necessary.) The structure M describes a set of models M* within which the
best one is sought for. Identifiability of model structures concerns the question
whether different parameter vectors may describe the same model in the set M*.
See Definitions 4.6 to 4.8. A related question is whether the data set Z” allows us to
distinguish between different models in the set. Recall that, according to Definition
4.1, a (linear time-invariant) model is given by a filter W(g). We shall call a data set
informative if it is capable of distinguishing between different models. We thus
introduce the following concept:

Definition 8.1. A quasi-stationary data set Z“ is informative enough with
respect to the model set M* if, for any two models Wi(q) and Wx(q) in the set,

E[(Wi(q) — W(@)z ()] = 0 (8-12a)
implies that Wi(e*) = Wj(e™) almost all 0. W
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We note that with

Wi(g) — Wi(q) = [AW.(q) AW(q)]
(8.12a) can be written

E[AW.(q)u(r) + AW(q)y () =0 (8.12b)
Note that the limit in (8.12) exists in view of (8.6) and Theorem 2.2. Recall also
(4.109) and the definition of equality of models, (4.113).

Definition 8.2. A quasi-stationary data set Z* is informative if it is informa-
tive enough with respect to the model set £*, consisting of all linear, time-invariant
models. W

The concept of informative data sets is very closely related to concepts of
“persistently exciting” inputs, “general enough” inputs, and so on. We shall discuss
the concept in detail in Chapter 14 in connection with experiment design. Here we
give an immediate consequence of Definition 8.2.

Theorem 8.1. A quasi-stationary data set Z is informative if the spectrum
matrix for z (¢) = [u(¢) y (¢)]” is strictly positive definite for all ».
Proof. Consider (8.12) for arbitrary linear models W, and W,. Denote
Wi(q) — Wi(q) = W(q). Then applying Theorem 2.2 to (8.12) gives
0= f W(e®)D. (w)W (e “)dw

where

O HA R @13

Since @, (w) is positive definite, this implies that W(e™) = 0 almost everywhere,
which proves the theorem. W

Some Additional Concepts and Notations (*)

In Definition 4.3 we defined a model structure as a differentiable mapping,
such that the predictors and their gradients were stable for each 6 € D « - To facili-
tate the analysis, we now strengthen this condition.

Definition 8.3. A model structure M is said to be uniformly stable if the
family of filters {W(q,6), ¥(g,0) and (d/d6)¥(q,0); 6 € Dy} is uniformly sta-
ble. B

Analogous to (4.106), we shall, when S1 holds, define
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Xo(t) = [gﬂg{l (8.14a)
and

Ti(q) = [Go(9) Ho(9)] (8.14b)
The system (8.7) can thus be written

y (&) = To(q)xo(1)
The difference will be denoted

T(q.0) = Ti(q) — T(g,6) = [G(4.6) A(q,6)] (8.15)

8.3 PREDICTION-ERROR APPROACH

Basic Resuit
The prediction-error estimate is defined by (7.12)

6y = arg min Vy(6,Z") (8.16)
6€Dy

To determine the limit to which 6y converges as N tends to infinity is obviously
related to the limit properties of the function Wy (6, Z"). For a quadratic criterion
and a linear, uniformly stable model structure M, we have

Vi(0,Z%) = -1{—, ﬁ 2e,0) (8.17)
and, using (7.2),
e(t,0) = [1 — W,(q,0)]y(9) — W.(q,0)u(r) (8.18)

Under assumption D1 we can replace y () and «(¢) in the preceding expression by
(8.2), which gives

&(t,0) = i dP(k;0)w(t — k) + i d®(k; 8) et — k) (8.19)

Now the filters in (8.18) are uniformly (in 6) stable since M is uniformly stable.
Under assumption (8.5) the filters in (8.2) are uniformly (in ¢) stable. Hence the
cascaded filters {d?(k;0)}, i = 5, 6, in (8.19) are also uniformly (in both 6 and 1)
stable (see Problem 8D.2). That is,

|d(k;8)| = Be, V1,V60 € Dy, i =5,6 X Be<® (8.20)

1
Finally, under assumption (8.6), Theorem 2.2 implies that {e(¢,0)} is quasi-
stationary.
All conditions for Theorem 2B.1 are thus satisfied, and applying this theorem
to (8.17) with (8.19) gives the following result.
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Lemma 8.2. Consider a uniformly stable, linear model structure M (see
Definitions 4.3 and 8.3). Assume that the data set Z~ is subject to D1. Then, with
Vw(8, Z") defined by (8.17),

Sup |Vv(8,2Z") — V(8)}=0, w.p.lasN—> (8.21)
€Dy
where
V(6) = E5 ¢(:,0) (8.22)
n

The criterion function Vy(6, Z") thus converges uniformly in 6 € Dy to the
limit function V(0) This implies that the minimizing argument 6y of Vy also con-
verges to the minimizing argument * of V. Notice that it is essential that the
convergence is indeed uniform in 6 for this to hold (see Problem 8D.1). It may
happen that V(O) does not have a unique global minimum. In that case we define
the set of minimizing values as

D, = arg min V(0) = {00 € Dy, V(9) = min V(6')} (8.23)
6¢Dy ¢ €Dy
We can thus formulate this corollary to Lemma 8.2 as our main convergence result:

Theorem 8.2. Let y be defined by (8.16) and (8.17), where €(t, 8) is deter-
mined from a uniformly stable linear model structure M. Assume that the data set
Z~ is subject to D1. Then

by—D., w.p.lasN—>w (8.24)
where D, is given by (8.22) and (8.23).
Remark. Convergence into a set as in (8.24) is to be interpreted as
inf |6y — 8]0, asN-oow (8.25)
[ |

€D,

The function V() will in general depend both on the true system and the
input properties. With a quadratic criterion and a linear model structure, it follows
from Theorem 2.2 that it depends on the data only via the spectrum matrix ®, (») in
(8.13). [Explicit expressions will be given in (8.61) to (8.65).] This has the important
consequence that it is only the second-order properties of the data that affect the
convergence of the estimates.

Ensemble- and Time-averages

The signal sources for (t,0) are w and ¢, as evidenced by (8.19). Recall that
w = u in case of open loop operation. The symbol E denotes as defined in (2.60)
ensemble-averaging (‘“statistical expectation’) over the stochastic process {e(t)}
and time-averaging over the deterministic signal {w (¢)}. The function V(8) is thus
“the average value” of €(7,0) in these two respects.
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The reason for time-averaging over {w(¢)} is, as we have stated several times,
that it might not always be suitable to describe this signal as a realization of a
stochastic process. However, when indeed {w(¢)} is taken as a realization of a
stationary stochastic process, (independent of e;), Theorem 2.3 shows that, under
weak conditions, time averages over {w(¢)} will, with probability 1, equal the en-
semble averages:

lim 1 % w(Ow(t —7) = Eyw(@w(t — 1) w.p. 1 (8.26)

Here E,, denotes statistical expectation with respect to the w-process.
This means that e;-ensemble- and w-time-averaging by E will, w.p. 1, be
equivalent to taking total statistical expectation over both e; and w:

"E=E,E,, wp.1” (8.27a)
ie.,
V(8) = E¢¥(t,0) = E,E.,£%(t,6)  w.p. 1 (8.27b)

For “hand calculation” it is often easier to apply this total expectation: See
Examples 8.1 to 8.2.

[Conversely, one could also replace ensemble averages over e, by time aver-
ages to eliminate the probabilistic framework entirely: See Problem 8T.1.]

The General Case

With a little more technical effort, the results of Lemma 8.2 and Theorem 8.2
can also be established for general norms €(g,8) as in (7.16), in which case the limit
is defined as

V(6) = E¢€(e(t,6),6) (8.28)
The result can also be extended to nonlinear, time-varying models and less re-

strictive assumptions on the data set than D1. See, for example, Ljung (1978a) for
such results. In summary we thus have

6y — arg min E¢(e(t,6),60, wp.1asN— o (8.29)
6€ Dy

This convergence result is quite general and intuitively appealing. It states that the
estimate will converge to the best possible approximation of the system that is avail-
able in the model set. The goodness of the approximation is then measured in terms
of the criterion V(6) in (8.28). We shall dwell on what “best possible”” actually
means in more practical terms in the next two sections. First we give two examples.
Example 8.1

Suppose that the system is given by
y(l) + aoy(t - 1) = bou(t - 1) + eo(t) + Coeo(t - 1) (830)
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where {u(¢)} and {e.()} are independent white noises with unit variances. Let the model
structure be given by

F(t|8) +ay(t —1) =bu(t —1), 0= [g} (8.31)
The prediction-error variance is
V(6) = Ely() + ay(t = 1) = bu(t - DF

= ro(1 + a* — 2aa,) + b* — 2bb, + 2ac, (8.32)
where
b3 + colco — @0) — doco + 1

1-a}

ro= Ey’(t) =

(see Problem 2E.7). It is easy to verify that the values of a and b that minimize (8.32) are
6* = [a* b*]” given by

Co
a* =aqo — P
[4)
* = b, (8.33)
These values give a prediction-error variance
2
Ve =1+G-2 (8.34)
0

This variance is smaller than the “true values™ 6, = [ao bo]” inserted into (8.32) would give:
V() =1+ (8.35)

When we apply the prediction error method to (8.30) and (8.31), the estimates @y and by will
converge, according to Theorem 8.2, to the values given by (8.33). The fact that a* # a is
usually expressed as that the estimate is “biased.” However, it is clear from (8.34) and (8.35)
that the bias is beneficial for the prediction performance of the model (8.31). It gives a strictly
better predictor for ¢ = a* than ford =a,. Wl

Example 8.1 stresses that the algorithm indeed gives us the best possible
predictor, and it uses its parameters as vehicles for that. It is, however, important to
keep in mind that what is the best approximate description of a system in general
depends on the input used. We illustrate this by a simple example.

Example 8.2
Consider the system

y(@) =bou(t — 1) + eot) (8.36)
where

u() =dou(t — 1) + w(t) (8.37)

and where {eo(#)} and {w ()} are independent white-noise sequences with unit variances. Let
the model structure be given by

y(1|6) =bu(t-2), 6=0b (8.38)
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The prediction-error variance associated with (8.38) is
E[y(t) — bu(t — 2)F = E[bou(t — 1) — bu(t — 2)T + Ee()
= E[(bodo — b)u(t —2) + bow(t — NF +1
(bodo — b)Y
=+ b5+ 1
1-& °

Hence

A

by —>bods, w.p.las N>

since this gives the smallest prediction-error variance. Now the predictor

$(tt = 1) = bodou(t — 2) (8.39)
is a fairly reasonable one for the system (8.36) under the input (8.37). It yields the prediction-
error variance 1 + b3, compared to the optimal 1 for a correct model and the output variance

b}
1-di

Notice, however, that the identified model is heavily dependent on the input that was used
during the identification experiment. If (8.39) is applied to a white-noise input {u(f)},

(do = 0), the model (8.39) is useless: It yields the prediction-error variance 1+ b} + b3d3,
which is larger than the output variance 1+ bi. B

1+

8.4 CONSISTENCY AND IDENTIFIABILITY

Suppose now that assumption S1 holds so that we have a true system, denoted by ¥.
Let us discuss under what conditions it will be possible to recover this system using
prediction-error identification.

Clearly, a first assumption must be that & € M; that is, the set Dr(¥, M)
defined by (8.9) is nonempty.

¢ € M: Quadratic Criteria

The basic consistency result is almost immediate.

Theorem 8,3.  Suppose that the data set Z* is subject to assumptions D1 and
S1. Let M be a linear, uniformly stable model structure such that & € M. Assume
also that Z* is informative enough with respect to M. Then

D. = D(9, M) (8.40)

where D, is defined by (8.22) and (8.23) and D(, At) by (8.9). If, in addition, the
model structure is globally identifiable at 6, € D (Y, M), then

D. = {6} (8.41) W
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Theorems 8.2 and 8.3 together consequently state that the estimated transfer func-
tions obey

G(e™,0v)— Go(e™); H(e™,6y)— Hy(e™), w.p.lasN—oo  (8.42)

Proof of Theorem 8.3. Let 6, € Dy and consider, for any 6 € D, ,
V(6) — V(65) = Ele(t,0) — (t,60)e(t,60) + 1 E[e(,0) — (5, 60)  (8.43)
Since 6, € Dy,
e(t,600) = Hy'(q)Go(@)u(t) — Hi'(q)y () = eo(t)
according to S1. Moreover, the difference
e(t,6) — e(t,60) = y(t|60) — ¥ (£|6)

depends only on input-output data up to time ¢ — 1 and is therefore independent of
eo(?) [cf. (8.2)]. The first term of (8.43) is therefore zero. The second term, which
equals

E[y(160) — y (tO)F

is strictly positive if 6 and 6, correspond to different models, since the data set is
sufficiently informative; see (8.12). Hence (8.40) follows from (8.23). The result
(8.41) follows since global identifiability of M at 6, implies that Dy = {6} [see
(4.132)]. m

Gy € %: Quadratic Criteria

Often it is more important to have a good estimate of the transfer function G
than of the noise filter H. We shall now study the situation where the set of model
transfer functions

% = {G(e"™,0)|60 € Dy}
is large enough to contain the true transfer function,
Go€% (8.44)
but the true noise description H, cannot be exactly described within the model set.
Hence ¥ ¢ M. We then have the following result:

Theorem 8.4.  Suppose that the data set Z~ is subject to assumptions D1 and
S1. Let M be a linear uniformly stable model structure, such that G and H are
independently parametrized:

o=1?] cwo-cwe H@H-HE (8.45)
and such that the set
Do(S,40) = (6] G (e®, ) = Gil(e™) Yo} (8.46)
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is nonempty. Assume that Z* is informative enough with respect to M and that the
system operates in open loop; that is,

{u(8)} and {e((t)} are independent (8.47)

. FA’N
G ="
N [mv]

be obtained by the prediction-error method (8.16) and (8.17). Then

Let

py— D (¥, M), w.p.lasN—>w (8.48)
[ ]

The result (8.48) can be written more suggestively as
G(e™, by)— Go(e®), w.p.lasN—ow (8.49)
Proof. Consider the function V(8) given by (8.22). We have from S1
e(t,0) = H (g, m)[y () — G(g, p)u ()]
= H7(g, MI(Go(q) — G(g, p))u(?) + Ho(q)eo(?)]
= up(t,n,p) + er(t,m)

with obvious notation.
Since u and ¢; are independent, we have that

V(8) = V(p,n) = 3[Eui(t,p,m) + Eer(t,m)]
The first term is zero precisely when p € Dg (¥, M), and the second term is indepen-
dent of p. Hence
arg min V(p,m) = D (¥, M)
P

irrespective of H, which, together with Theorem 8.2, concludes the proof. B

We may add that both assumptions (8.45) and (8.47) are essential for the
result to hold. See Example 8.1 and Problem 8E.3.

The case of independent parametrization (8.45) covers the output error model
(4.25) along with variants with fixed noise models

y() = G(q,0)u(t) + Hx(q)e(t) (8.50)

[which alternatively can be regarded as the output error model used with a prefilter
L(q) = VH«(q); see (7.13) and (7.14)]. It also covers the Box-Jenkins model
structure (4.31). These model structures consequently have the important advan-
tage that the transfer function G can be consistently estimated, even when the noise
model set is too simple to admit a completely correct description of the system.
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Example 8.3
Consider the system (8.30) of Example 8.1, and let the model structure be a first-order
output error model:

~1

bq
1+aq™

y(tl6) = u(?)

In this case it follows from Theorem 8.4 that the estimates dy and by will converge to the true
values go and b,. W

¥ € ML: General Norm £(¢) (*)
With a general, 8-independent norm €(&), the estimate converges into the set
D.:
6y— D, = arg min E£(&(¢,6)) (8.51)
6Dy
according to (8.29). In general, the set D, will depend on €. However, when ¥ € M it
is desirable that D. = Dy(¥, M) for all reasonable choices of €. Clearly, some
conditions must be imposed on ¢, and Problem 8D.3 shows that it is not sufficient to
require £(¢) to be increasing with [e|. We have to require £(&) to be convex tc be able

to prove a result that holds for all distributions of the innovation e,(¢). We thus have
the following extension of Theorem 8.3.

Theorem 8.5. Let €£(x) be a twice differentiable function such that
Et'(eft))=0 (8.52)
'x)=8%>0, Vx (8.53)

Here e(t) are the innovations in assumption S1. Then, under the assumptions of
Theorem 8.3,

D, = D($, M)
with D, defined by (8.28) and (8.23).
Proof. Let 6, € Dy and denote as usual
e(t, 6o) = eo(t)
Then for any 6 € Dy
e(t,0) = elt) + y(t, 6)

where E[ (¢, 8)) > 0 since the data set is sufficiently informative. Hence, by Tay-
lor’s expansion,

€(e(t, 0)) = Lea()) + (1, 0)€'(eo(1)) + 3[ ¥ (&, O)F €"(£(1))
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where £(¢) is a value between ey(t) and (¢, 8). Since ey(t) and y (¢, 6) are indepen-
dent, this expression gives

E€(e(t, 0)) = E€(es(t)) + 0 + 1 E{[y (&, 0)F €"(£())}
= Et(eo(t)) + 8- E[y (2, 0)]* > Et(eo(t))

using (8.52) and (8.53) and E[y(z, 9))* >0, respectively. This concludes the
proof. W

Clearly, an analogous extension of Theorem 8.4 can also be given.
In the maximum likelihood method the norm ¢ is chosen as the negative
logarithm of the PDF of the innovations; (7.73):

¢(x) = —logf.(x) (8.54)

It can be shown that (8.52) automatically holds for this norm, and that Theorem 8.5
holds without condition (8.53). See Problem 8G.3.

& € M: General Norm {(¢, o) (*)

We consider now the case where the norm is parametrized by an a that is
independent of the parametrization of the predictor as in (7.17). We this have that
the limit values of 8 and « are given by

(6*,a*) = arg min V(, a) = arg min E€((t, 0), ) (8.55)
6a 8,a
If ¥ € M and the conditions of Theorem 8.5 are satisfied for all a, then it is clear that
0* € D(¥, M), regardless of a. This means that
o* = arg min E€(ey(t), o) (8.56)

We shall study what (8.56) tells us about the limit value a*. We first have the
following result.

Lemma 8.3. Consider a norm (7.17), normalized so that

f T et dy = 1Va (8.57)
Let the PDF of ey(¢) be f.(x), and assume that for some o,
£(x, ag) = —logf.(x) (8.58)
Then o* = ay in (8.56).
Proof. Let
fula) = e~
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Hence

Et(est), ) — E€(ex(t),a0) = —E lo }’228;
= —log E;‘: (ezzt;; f B" }/(x)dx = —log f fa(x)dx =0

The inequality is Jensen’s inequality (see Chung, 1974) since logx is a convex
function, and equality holds if and only if f,(x) = const-f,(x). This proves the
lemma. W

Heuristically, we could thus say that

the minimization with respect to « in (8.55) tries to make the norm £(¢, ) look like the
negative logarithm of the PDF of the true innovations. (8.59)

Example 8.4
Let €(e, o) be given by (7.75):

£(c,0) = % [ + loga]

We find that

Ele(eot), )] = 2 [Ee:(‘) + log a] - % [%" + loga]

which is minimized by a = Ao . The estimate &x will thus converge to the innovation variance
as N tends to infinity. See also Problem 7E.7. B

When the parametrizations of the predictor and of the norm £(e,0) have
common parameters, the conclusion is that

6* = arg min E€((t,6),0)
GeDy

will give a compromise between making the prediction errors {&(¢, 8)} equal to the
true innovations {ey(¢)} and (8.59), that is, making the norm look like —logf,.(x). In
case these two objections cannot be reached simultaneously, consistency may be
lost even if D7 (¥, M) is nonempty. See Problem 8E.2.

Multivariable Case (*)

The convergence and consistency results for multivariable systems are entirely
analogous to the scalar case. The result (8.29) holds without notational changes for
the multivariable case. The counterparts of Theorems 8.3 and 8.4 with quadratic
criteria

Ee(e(1,0)) = LEe™(r,0)A " (1, 0) (8.60)
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hold as stated, with only obvious notational changes in the proofs. For Theorem 8.5,
the condition (8.53) takes the form that the p X p matrix €"(¢) should be positive
definite.

8.5 LINEAR TIME-INVARIANT MODELS: A FREQUENCY-DOMAIN
DESCRIPTION OF THE LIMIT MODEL

Theorem 8.2 describes the limiting estimate 6*, 6* € D,_, as the one that minimizes
the prediction error variance among all models in the structure M. In case & € M,
this means that * = 6, is a true description of the system (see Theorem 8.3), but
otherwise the model will differ from the true system. In this section we shall develop
some expressions that characterize this misfit between the limiting model and the
true system for the case of linear time-invariant models. See also Problem 8G.4.

The Function V(8) for Open-Loop Operation
By the fundamental expression (2.65), we may write
V(o) = ELedr o) = L f "
V(o) = Eze (t,6) = ey B P (w,0)dw (8.61)

where ®.(w,0) is the spectrum of the prediction errors {¢(¢, #)}. Under assumption
S1 we have

y(0) = Go(qu(t) + vo(t) (8.62)
where the additive noise {v,(¢)} has the spectrum
q)v ((1)) = )\0 lHo(eim)lz (863)

Then, for a linear model structure, we obtain the prediction errors
e(t,0) = H7'(q,0)[y(t) — G(q,0)u(1)]
= H™(q,0)[(Go(q) = G(g,0))u(t) + vo(0)] (8.64)
Applying Theorem 2.2 to (8.64) gives the expression for ®,(w,6):

_G(e*,0)F @.(w) + @, (w)
®,(w,0) = Heew 67 (8.65)

provided v, and u are independent. Here G is the difference in (8.15). Hence
V(0) = Ex%(4,0)

= =] 1Gie™) ~ G 0P @) + D) gde (8.6

224 Convergence and Consistency



We now have a characterization of
D, = arg min V(8) (8.67)
[}

in the frequency domain.
Fixed Noise Model

For a fixed noise model H(q,8) = H*(q) V0, (8.66) and (8.67) can be re-
written:

D, = arg omin f |Go(e™) — G(e™,0)]* 0* (w)dw (8.68a)
* (o) = P, (w)
0" (@) = i (8.68b)

where we disposed of 8-independent terms. Let 8* € D.. In this case, the limiting
model

G* (eim) — G(eim’o*)

is a clear-cut best mean-square approximation of Gy(e*), with a frequency weight-
ing O* that depends on the noise model H* and the input spectrum ®,, and can be
interpreted as the model signal-to-noise ratio.

Independently Parametrized Noise Model (*)

Consider now an independently parametrized noise model (8.45), (4.125). Let
0* € D.. Then we can write 8* = [p* n*]".

p* = arg min r |Go(e™) — G(e®,p)f Q(0,n*)dow (8.69a)
_ ®,(w)
Q(w’n) |H(eim’,n)|2 (869b)
n* = argnmin _ﬂ %d(ﬂ (8.70a)
where
Der(@,p) = |Go(e™) — G(e™,p) Du(w) + D, (@) (8.70b)

is the error spectrum, i.¢., the spectrum of the output error y(¢) — G(q, p)u(¢). In
this case we see that G*(e™) is fitted to Go(e™) in the Q (w,m*) norm, which is not
known a priori, but defined indirectly through (8.70) via the noise model H (e*,q*).

To better understand the minimization problem (8.70), let us factorize the
error spectrum

Der(w,p*) = N¥N(e™,p*)[ (8.71)
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for a monic, stable and inversely stable N (g, p*). Notice that when G (g, p*) = Go(q)
then N(g, p*) equals Ho(g); see (8.70b) and (8.63). Then

Per(@,p*) _ . N(e“,p*)|?
|H(eim,,q)|2 H(e™,m)
ol NP p*) — H(e“m)|* (8.72)
B B T
= )\*[1 + |R(eiw)l2 + R(eiw) + R(eiw)]
with
R(ei“’) - N(eim,p*) — H(e*,m) (8.73)

H(e",m)
(R depends on m and p*, but we drop these arguments). Since N and H are both
monic and since H (e™,n) is inversely stable, we can write

-

R(e®) = 2 r(kje™™

the important observation being that the term corresponding to k = 0 in the sum is
zero. Thus

[ Re"dw =0
Note also that we may write

R(e™) = _[ 1 1

N(e o)  H(™m)

] -N(e™ p*) (8.74)

Collecting all this means that (8.70) can be rewritten

1 1
N(e*,p*) H(e*,m)
which shows that the inverse noise model 1/H is fitted to be the inverse spectral

factor of the error spectrum 1/N (defined by (8.71)) in a quadratic norm given by the
error spectrum. Put less formally,

2

- @gp(w, p*)do (8.75)

n* = arg minf
n

-

w* is such that the model noise spectrum |H (e, n*)* resembles the error spectrum
®er(w, p*) as much as possible, within the chosen set of model noise spectra.  (8.76)

General Case
In the general case (8.66), when the noise model has parameters in common
with the transfer function, no clear-cut formal characterization of the resulting

estimates can be given. It is useful, though, and intuitively appealing to see the
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resulting estimate * as a compromise between fitting G(e™, 8) to G(e™) in the
quadratic frequency norm,

b, (w)
* I em—rime
Q(O.), 0 ) IH(eim, 0*)'2 (877)
and fitting the model spectrum |H (e®, 9)[* to the error spectrum,
Ber(@, 0%) = |Go(e™) — G(e™, §*)P D, (w) + ®,(w) (8.78)

in the manner described by (8.75). This interpretation, although approximate, is
quite illuminating.
Example 8.5
Consider the system

y(#) = Go(q)u(t)
with
0.001g "*(10 + 7.4 ' + 0.924q 2 + 0.1764q °)
1-2.14g7" + 1.553¢ 7% — 0.4387q¢ > + 0.042q ~*
No disturbances act on the system. The input is a PRBS (see Chapter 14) with basic period
one sample, which gives @, (w) = 1 all ©.

This system was identified with the prediction-error method using a quadratic criterion
and prefilter L (g) = 1 in the output error model structure

b1 q -1 + b2 q -2
u(t 8.80
L+fig7 +fq7" ® (8:80)
Bode plots of the true system and of the resulting model are given in Figure 8.2. We see that

the model gives a good description of the low-frequency properties but is bad at high
frequencies. According to (8.68), the limiting model is characterized by

Golg) = (8.79)

y(ele) =

*=arg minj |Go(e™) — G(e™, 8)Pdw (8.81)
[} -n
amplitude phase
14 - 00
0.1
- —150°
0.01 +
Figure 8.2 Bode plots of true system o
and model identified in (8.80). Solid lines: - 300
Amplitude plots; dashed lines: phase
plots; thick lines: true system; thin lines: T
estimate. 0.01 01 ! (rad/s)
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since H* (q) = 1 and ®.(w) = 1. Since the amplitude of the true system falls off by a factor of
10"? to 1073 for » > 1, it is clear that errors at higher frequencies contribute only marginally
to the criterion (8.81); hence the good low-frequency fit.

Consider now instead an ARX structure

big '+ byg7?
14 24 u(t) + _11
1+aq™ " + axq

y(@) = —e() (8.82)

1+aq ' +a,q7?
corresponding to the linear regression predictor
P(t10) = —ay(t — 1) —axy(t —2) + biu(t — 1) + bau(t — 2)

When applied to the same data, this structure gives the model description in Figure 8.3, with
a much worse low-frequency fit. According to our discussion in this section, this limit model
is a compromise between fitting 1//1 + a1 ™ + a;e*|* to the error spectrum and minimizing
(a¥ and a} correspond to the limit estimate *)

f_ |Go(e™) — G(e™, 0)- |1 + at e™ + af e* [ dw (8.83)

The function |A(e*)P = |1 + af e™ + af e*** is plotted in Figure 8.4. It assumes values at
high frequencies that are 10* times those at low frequencies. Hence, compared to (8.81), the

amplitude phase

1 L 00

0.1
- —150°
0.01 4
- -300°
Figure 8.3 Bode plots of true system
T w and of model identified in (8.82). Legend
0.01 0.1 1 {rad/s) as in Figure 8.2.
amplitude
10
1
0.1 4
0.01
0.001
L ! T Figure 8.4 The weighting function
0.01 0.1 1 (rad/s) |A (e*)[* in (8.83).
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criterion (8.83) penalizes high-frequency misfit much more. This explains the different prop-
erties of the limit models obtained in the model structures (8.80) and (8.82), respectively. ll
8.6 THE CORRELATION APPROACH

In Section 7.5 we defined the correlation approach to identification, with the special

cases of PLR and IV methods. The convergence analysis for these methods is quite
analogous to the prediction-error approach as given in the previous few sections.

Basic Convergence Result

Consider the function

1 N
(8,2 =3 2 U1, 0)e(t, 6) (8.84)
t=1
where & is given by
er(t, ) = L(q)e(s, 6) (8.85)
and the correlation vector {(, 8) is obtained by linear filtering of past data:
£t 0) = K,(q, 0)y (1) + K.(q, 0)u(r) (8.86)

(both filters contain one delay). Determining the estimate 6y by solving fy (6, Z") =
0 gives the correlation approach (7.96). We have here specialized the general
instruments (7.96b) to a linear case (8.86).

The convergence analysis of (8.84) is entirely analogous to the prediction-
error case. Thus we have from Theorem 2B.1:

Lemma 8.4. Let the data set Z* be subject to D1, and let the prediction
errors be computed using a uniformly stable linear model structure. Assume that
the family of filters

{K,(g, 6),Ku(q, 0); 6 € Dy}
is uniformly stable. Then
0s€11&]fN(0,ZN) - f(8)|=0, wp.lasNoow (8.87)
where
f(6) = EY(t, 0)e£(t, 6) W (8.88)

For the estimate éN, we thus have the following result.

Theorem 8.6. Let éN be defined by

A

6v = sol [fy(8,Z%) = 0]
8¢ Dy
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Then, subject to the assumptions of Lemma 8.4,
by — Dy, w.p.lasN—x (8.89)
where

D, = {616 € Dy, f(8) = 0} | (8.90)

The theorem is here given for the special choice a(er) = ef in (7.96d). The exten-
sion to general o( - ) is straightforward.

This convergence result is quite general and also quite natural. The limiting
estimate 8* € D will be characterized by the property that the filtered prediction
errors {ex(¢, 8*)} indeed are uncorrelated with the instruments {{(¢, 8*)}. This was
also our guideline when selecting 6y. We shall now characterize D, in more prac-
tical terms for some special cases.

¥ ¢ M: Consistency (*)

An assumption ¥ € M would in this case be that there exists a value
8 € Dy suchthat {e(¢, 6)) = e,(#)} is a white noise. With L(q) = 1, we thus find that
f(8,) = 0, since e(t) is independent of past data and in particular of {(t, 65). Hence,
as expected.

Whether this set contains more elements when the data are informative and the
model structure globally identifiable at 6, is not so easy to analyze in the general
case.

G, € 4: Instrumental-variable Methods

Consider the IV method with instruments
L, 6) = Ku(g, 0)u(r) (8.92)
The underlying model is
A(q)y (1) = B(qu(t) + v(1)
for which the predictor
F(tl6) = #7006

is determined as in (4.11) and (4.12).
Under assumption S1, the true system is given by (8.7). If there exists a 6p
corresponding to (Ao(g), Bo(q)) such that

Go(g) = %}%, [Go € G; cf. (8.44)]
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we can consequently write (8.7) as

y() = A"Eq; u(t) + Ho(g)eol?) (8.93)
or

y () = ¢7(t)6 + wol?) (8.94)
where

wo(t) = Ao(q)Ho(q)eo(?) (8.95)

Suppose now that the system operates in open loop so that {wy(¢)} and {u(¢)}
are independent. Then

f(8) = E(s, )L (9)le"(1)(6 — 8) + wo(1)]
= [EL(t, 0)eF(£))(6 — 6) (8.96)
where

¢r (1) = L(g)9™() (8.97)

The second equality in (8.96) follows since {(¢, 8) is entirely constructed from past
u(t), while L(g)wy(t) is independent of {u(#)}. Under the stated assumptions, we
thus have that 6, € D, and whether this set contains more 6-values depends on
whether the matrix E{(t, 8)¢F(¢) is singular.

Suppose now that the instruments { do not depend on 6 and are generated
according to (7.108) to (7.110). The matrix

R = E{(0)¢F(r) (8.98)

is then a constant matrix that depends only on the filters L(g), K(q), N(g), and
M (g), on the true system, and on the properties of {u(¢)}. A thorough discussion of
the nonsingularity if R is given in S6derstrém and Stoica (1983). We first note the
following facts. Let n2, n§ be the orders of the true description (8.93), and let n,, n,
be the corresponding model orders. Let the orders of the instrument filters (7.108)
to (7.110) be n, and n,,. Then

1. If min(n, — nd, n, — n§) > 0, then R is singular. (8.99a)
2. If min(n, - n,, n, — n,) >0, then R is singular. (8.99b)
To see this, let
o(Q)
a() = 51 B (8.100)

) =[-z(t = 1)... =2zt —m)u(t = 1)...u(t — n,)]"
Let ¢x(t) = L(q) &(¢). If n, > n% and n, > n , then (8.100) implies that there exists
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an (n, + n,)-dimensional vector S such that ¢’(¢)S = 0. Then also oL()S =0.
Now, since {wy(#)} and {u(#)} are independent, we have

R = E{(1)eF(t) = EL(DF(®) (8.101)

which shows that RS = 0 and R is singular. Similarly, (8.99b) implies the existence
of a vector $ such that ST{(¢) = 0.

When neither of (8.99) hold, the matrix R is “generically” nonsingular. To
show this, the reasoning goes as follows: For a given true system and a given input,
denote the coefficients of the filters L, K, N, and M by p. The matrix R is thus a
function of p: R(p). Now consider the scalar-valued function det R(p). This is an
analytic function of p (see Finigan and Rowe, 1974). If such a function is zero for p in
a set of positive Lebesque measure, then it must be identically zero. If we can find a
value p* such that det R(p*) # 0, we thus can conclude that det R (p) # 0 for almost
all p (in the set where det R is analytic). Such p* can be found if the input spectrum
&, (w) > 0 for all  and the orders of the filters N and M are chosen at least as large
as the corresponding model orders n, and n, (see Problem 8T.2). We thus have the
following result.

Suppose that the system is given by (8.93), that &, (w) > 0, and that v and e are
independent. Let the instruments {(t) be given by (7.108) to (7.110). Assume
that neither of the conditions in (8.99) hoids. Then R in (8.98) is nonsingular for
almost all such choices of N, M, L, and K. (8.102)

Frequency-domain Characterization of D,
for the IV Method (*)

The prediction errors, under assumption S1, can be written
e(t, 0) = A(q)y (1) — B(qu(r)
- 4@ G ) + Holgent) ~ 3 Bu(0)]

using (8.93). With the instruments given by (8.92), we thus have, analogous to (8.61)
to (8.66),

f(6) = EL(t, 0)e(t, 0)
= -21?[[ [Go(e™) — G (e, 6)]P.(w) - A(e™) - L(e®)-K.(e™™, )dw (8.103)

with
B(e™)
Ae™)

Here K, (e "™, 6) is a d-dimensional column vector.

G(e™,0) =
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The limiting estimates 8, € D are thus characterized by the fact that certain
scalar products with the error Go(e*) — G (e™, 61) over the frequency domain are
zero.

8.7 SUMMARY

In this chapter we have answered the question of what would happen with the
estimates if more and more observed data become available. The answer is natural:
We have for the prediction-error approach (7.120) that

6y — arg min E€((t, 6),60), w.p.lasN—oo (8.104)
9€Dy

and for the correlation approach (7.121) that
Ov— sol [EL(t, 0)a(er(t, 8)) =0], w.p.lasN—co (8.105)
8€Dy

These results were proved in Theorems 8.2 and 8.6, respectively.

The limiting models are thus the same as those that we could have computed
as the best system approximations, in case the probabilistic properties of the system
had been known to begin with.

In case a true description of the system is available in the model set, the model
will converge to this description under certain natural conditions on ¢, provided the
data set is informative enough. This was shown in Theorems 8.3 to 8.5.

When no exact description can be obtained, the model will be fitted to the
system in a way that for linear time-invariant models can be characterized in the
frequency domain as follows [see (8.68) to (8.76)]:

The limiting transfer function estimate G*(e™) is partly or entirely determined as the
closest function to the true transfer function, measured in a quadratic norm over the
frequency range, with a weighting function ®,(w)/|H(e*, 6*)]*, while the resulting
noise model |H(e*, 8*)* resembles the error spectrum ®gxr(w) as much as possi-
ble. (8.106)
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8.9 PROBLEMS

8G.1. Local minima: Consider the matrix I';(8) defined in Problem 4G.4 and recall that the
condition

I(6) >0 (8.107a)

implies local identifiability of the model structure at 6. Show that this condition
together with the condition

¢, (w) >0, Vo (8.107b)
[®,,(w) is the spectrum of xo(¢) defined in (8.14a)] implies that
Eu(t, 0)07(t, 8) >0
where §(, 8) as usual is (d/d8)y (¢|6). Show also that if (¢, 6) = eo(t) is white noise
and if
Et'(es(t)) =0,  E€'(es(t)) >0

then the conditions (8.107) (at 8 = 6,) imply that V(6) = E€((t, 6)) has a strict local
minimum at 6 = 6.

8G.2. Suppose that the transfer-function model set {G (g, 8)} consists of nth-order linear
transfer functions:

big™' ¥ +bq”"

1

G(q,0) =

—n

l+aiq” +---+anq
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8G.3.

8G.4.

8E.1.

8E.2.

8E.3.

And suppose that the input consists of n sinusoids of different frequencies, w;, i =

1,...,n0<w <.

(a) Suppose that the noise model is independently parametrized. Show that the limit
model G*(e™) fits exactly to the true system Go(e™) at the frequencies in question.
It is consequently the same result as if we applied frequency analysis with these
input frequencies.

(b) Suppose that the noise model has parameters in common with G (g, ), but that the
system is noise-free: @, (w) = 0. Show that the result under part (a) still holds.

Consistency of the maximum likelihood method: Suppose that the conditions of The-
orem 8.5, except (8.52) and (8.53), hold. Let

€(x) = —logf.(x)

where f. (x) is the PDF of ey(t). Show that (8.52) holds and that the theorem holds even
if (8.53) is not satisfied.
Consider the frequency-domain expression (8.61) for the criterion function. Show that
an alternative expression for ®.(w,8), valid also for inputs generated by feedback, is
T(e",0)®,(w)T7(e™,0)

|H(e™,0)*
with the notation (8.15), where @, (w) is the spectrum of xo(?) in (8.14).
Apply Theorem 8.2 to the LS criterion (7.33) and verify the heuristically derived result
(7.39).
Consider Problem 7E.4. Here the criterion function ¢((¢,6),6) is not parametrized
independently from the parametrization of the predictor. Suppose that the true system
is given by

q’,((&),@) = )\0 +

x(t + 1) = aox(t) + wo(t)

y(&) = x(1) + wo(?)
where {wo(?)} and {vo(¢)} are independent, white Gaussian noises with variances
Ewj(f) = 0.1 and Evj(r) = 10, respectively.
(a) Show that there exists a value 6* in the parametrization (7.122) such that
€(t,0*) = eo(t) = the true innovations
(b) Show that the maximum likelihood estimate 8¥" does not converge to 6* as N
tends to infinity.

(c) Explain the paradox.
Consider the output error model structure

FEI0) = e =D, 0= m
Suppose the true system is as in Example 8.1:
y() +aoy(t — 1) = bou(t — 1) + eo(t) + coeot — 1)
and that the input is generated as

u(t) = —koy(®) + r(t)
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S8E.4.

8E.S.

8T.1.

236

where {r(¢)} is white noise and
lao + k() bol < 1

Give an expression that characterizes the limit of 6. Will it be equal to [a; bo]™? On
what point are the assumptions of Theorem 8.4 violated?

Consider the model structure
y(O) +ay(t —1) =bu(t —1) +e@®), 6= [Z]

Suppose that the true system and input are given as in Problem 8E.3. Let fy be the IV
estimate of 6 with instruments

_|u -1
;(t) - [u(t _ 2)

Does 8y converge to 6o = [ZO]?
0

Consider the expression for &, of Problem 8G.4. Suppose that the feedback can be
described as

u(t) = K(q)e(t) + w()
Show that the error spectrum can then be written as
o 16 0P 0y () + G (e 0K (™) + He™ 0)F N}
’ |H (e*0)F

Consider a quasi-stationary sequence {«(f)} and a uniformly stable family of filters
{G(q,0),8 € Dy} Let

2(,0) = G(g,0)u(t)

Strengthen Theorem 2.2 to hold as follows: For each 8 € Dy, {z(#,6)} is a quasi-
stationary sequence and

N

% > 2%(t,0) — R«(0)

t=1

suy -0, as N -—»

6€ Dy

Here
Ro(0) = Ez%(1,0) = % f |G (e™,0)] P (w)dw
Use this result to give a probabilistic-free counterpart of Theorem 8.2: For any quasi-
stationary deterministic sequences {y (#)} and {u ()},
6y — arg min E€%(¢,0)
8€Dy

where

N
E€%(t,0) = )yinm% > €t,6)

=1

See Ljung (1985e) for a related discussion.

Convergence and Consistency



8T.2. Consider the situation of (8.102). Let the true system be given by (8.93) and suppose
that the filter choices are as follows:

L@ =K(@=1
N(gq) = Alg)
M(q) = Bu(q)

And @, (w) > 0 for all w. Show that R(p) is positive definite (and hence nonsingular)
for this choice of p.

8T.3. Let the system be given by
g y(0) = Go(q)u(t) + Ho(q)eo(t)
and an underlying model by
M: y(®)=G(q,0)u(t) + H(g,0)e(r) (8.108)
Suppose that
Dr($,M) = {60}
and that the data are informative. Now let
y(tle = k3 6)
be the k-step-ahead predictor computed from (8.108), and let §y be determined by

A 14 .
On = arg min & 2y - 5@t — k; 0T
=1

Show that 6y — 6, as N — o, provided there is no output feedback in the generation of
the input. What happens if there is feedback? What happens if there is feedback, but
there is a k-step time delay between input and output? (Hint: Note that the k-step-
ahead predictor is a special case of the general linear model so that Theorem 8.2 is
applicable. Try to copy the technique of Theorem 8.3.)

8D.1. Show that if )
_sup_ [fv() — fx)l—0
and
xy = arg minfy(x)
then )
xy—> arg min f(x)
8D.2. Show that (8.20) follows from (8.18), (8.2), and (8.5).

8D.3. To show that it is not sufficient to require €(x) to be increasing with |x| in Theorem 8.5,
consider the following counterexample:

0, x=0
_12kl, 0=[x[=3
£x) = 1, | =}

+1, with probability 1/2

et 60) = ealt) = {—1, with probability 1/2
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Suppose there exists a value 6 such that §(¢/6) — 7 (¢|6o) has the following distribution:

+1, with probability 1/2
{—-1, with probability 1/2
Check that
(a) Condition (8.52) of Theorem 8.5 is satisfied, but not (8.53).
) E€(t, 8) > E€(t, 6).
(©) E€(e(t, 6)) < E€(c(t, )) so that Oy+> 6.
8C.1. Consider Problem 7C.2. Draw a mesh plot of V(8) in the two cases discussed there.
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